10.57647/j.mjee.2025.sn85

Design of a chalcogenide-based 2D photonic crystalnanobeam cavity

  1. Department of Electrical Engineering, Islamic Azad University, Yazd, Iran
  2. Faculty of Engineering Shahrekord University, Shahrekord, Iran
  3. Department of Physics Education University of Farhangian, Isfahan, Iran

Received: 2025-02-28

Revised: 2025-03-26

Accepted: 2025-05-06

Published in Issue 2025-06-01

How to Cite

Zare, S. M. ., Ebnali Heidari, M. ., Shayesteh, M. R. ., Ebnali Heidari, A. ., & Nayeri, M. . (2025). Design of a chalcogenide-based 2D photonic crystalnanobeam cavity. Majlesi Journal of Electrical Engineering, 19(2 (June 2025). https://doi.org/10.57647/j.mjee.2025.sn85

PDF views: 190

Abstract

This article presents the design and optimization of a side-coupled chalcogenide-based 1D PhC nanobeam cavity in the mid-IR spectral range. The structure configuration consists of 1D PhC nanobeam and side-coupled bending bus waveguide for efficient light coupling.  Through numerical simulation and optimization, we optimized three key parameters: the number of mirror holes,  the radius of the central hole of the nanobeam cavity, and the  optimized coupling gap size, improving  the quality factor of the fundamental mode of the cavity.

Keywords

  • Photonic crystal,
  • Chalcogenide,
  • Wavelength,
  • Quality,
  • Derating factor,
  • Mid-ir

References

  1. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, Nature 1997, 390, 143. DOI: 10.1038/36514
  2. Y. Akahane, T. Asano, B. S. Song, S. Noda, Nature 2003, 425, 944.DOI: 10.1038/nature02063
  3. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watan abe, Appl. Phys. Lett. 2006, 88, 041112. DOI: 10.1063/1.2167801
  4. P. Lalanne, C. Sauvan, J. P. Hugonin, Laser Photonics Rev. 2008, 2, 514. DOI: 10.1002/lpor.200810018
  5. M.Notomi,E.Kuramochi,H.Taniyama, Opt. Express 2008,16,11095 DOI: 10.1364/OE.16.011095
  6. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, Appl. Phys. Lett. 2009, 94, 121106. DOI: 10.1063/1.3107263
  7. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, M. Notomi, Opt. Express 2010, 18, 15859. Laser Photonics Rev. 2021, 15, 2000317 2000317 (9 of 9) www.lpr-journal.org
  8. T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, S. Noda, Opt. Express 2017, 25, 1769. DOI: 10.1364/OE.25.001769
  9. Tomljenovic-Hanic, S., et al. "Design, Fabrication and Characterisation of Chalcogenide-Based Photonic Crystal Slabs." 2006 International Conference on Transparent Optical Networks. Vol. 2. IEEE, 2006 DOI :10.1109/ICTON.2006.248350
  10. Suthar, B., and A. Bhargava. "Chalcogenide photonic crystal filters for optical communication." AIP Conference Proceedings. Vol. 1393. No. 1. American Institute of Physics, 2011 DOI :10.1063/1.3653715
  11. Du, Yuzhou, Shufeng Li, and Cuicui Liang. "Design of a Chalcogenide Waveguide Amplifier Based on a Photonic Crystal with Compound Lattice." Asia Communications and Photonics Conference. Optica Publishing Group, 2013doi.org/10.1364/ACPC.2013.AW4B.2
  12. Tripathi, Devdutt, et al. "Recent developments in chalcogenide phase change material-based nanophotonics." Nanotechnology 34.50 (2023): 502001doi:10.1088/1361-6528/acf1a7
  13. Yaman, Mecit, H. Esat Kondakci, and Mehmet Bayindir. "Large and dynamical tuning of a chalcogenide Fabry-Perot cavity mode by temperature modulation." Optics express 18.3 (2010): 3168-3173 doi.org/10.1364/OE.18.003168
  14. Saber, Ivens, et al. "Photonic crystal nanobeam cavities with optical resonances around 800 nm." JOSA B 36.7 (2019): 1823-1828. doi.org/10.1364/JOSAB.36.001823
  15. Abbaslou, S., Gatdula, R., Lu, M., Stein, A., Soref, R.A., Jiang, W.: High-spectral-contrast symmetric modes in photonic crystal dual nanobeam resonators. IEEE Photonics Technol. Lett. 28, 2137–2140 (2016). DOI: 10.1109/LPT.2016.2582641
  16. B. Ellis, M. A. Mayer, G. Shambat,T. Sarmiento, J. Harris, E. E. Haller, J. Vuckovic, Nat. Photonics 2011, 5, 297. DOI: 10.1038/nphoton.2011.51
  17. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, Na ture 2013, 498, 470. DOI: 10.1038/nature12237
  18. . K. J. Vahala, "Optical microcavities," Nature 424(6950), 839–846 (2003). DOI: 10.1038/nature01939
  19. V. M. N. Passaro, B. Troia, M. La Notte, and F. De Leonardis, "Photonic resonant DOI: 10.1039/C2RA21984K
  20. microcavities for chemical and biochemical sensing," RSC Adv 3(1), 25–44 (2013). DOI: 10.1039/256843
  21. . R. V. Nair and R. Vijaya, "Photonic crystal sensors: An overview," Prog Quantum Electron 34(3), 89–134 (2010). DOI: 10.1016/j.pquantelec.2010.01.001
  22. M. Hosseinzadeh Sani, H. Saghaei, M. A. Mehranpour, and A. Asgariyan Tabrizi, "A novel all-optical sensor design based on a tunable resonant nanocavity in photonic crystal microstructure applicable in MEMS accelerometers," Photonic Sensors 11(4), 457–471 (2021). DOI: 10.1007/s13320-020-0607-0
  23. . F. Parandin, F. Heidari, Z. Rahimi, and S. Olyaee, "Two-Dimensional photonic crystal Biosensors: A review," Opt Laser Technol 144, 107397 (2021).DOI: 10.1016/j.optlastec.2021.107397
  24. Y. Ueda, T. Fujisawa, S. Kanazawa, W. Kobayashi, K. Takahata, and H. Ishii, "Very-low-voltage operation of Mach-Zehnder interferometer-type electroabsorption modulator using asymmetric couplers," Opt Express 22(12), 14610 (2014). DOI: 10.1364/OE.22.014610
  25. J.L. O’brien, A. Furusawa, J. Vučković, Photonic quantum technologies, Nat Photonics. 3 (2009) 687–695.DOI: 10.1038/nphoton.2009.229
  26. F.O. Afzal, S.I. Halimi, S.M. Weiss, Efficient side-coupling to photonic crystal nanobeam cavities via state-space overlap, JOSA B. 36 (2019) 585–595.DOI: 10.1364/JOSAB.36.000585
  27. S.I. Halimi, S. Hu, F.O. Afzal, S.M. Weiss, Realizing high transmission intensity in photonic crystal nanobeams using a side-coupling waveguide, Opt Lett. 43 (2018) 4260–4263.DOI: 10.1364/OL.43.004260
  28. Y. Xu, Y. Li, R.K. Lee, A. Yariv, Scattering-theory analysis of waveguide-resonator coupling, Phys Rev E. 62 (2000) 7389. DOI: 10.1103/PhysRevE.62.7389
  29. W. Xie, P. Verheyen, M. Pantouvaki, J. Van Campenhout, D. Van Thourhout, Efficient resonance management in ultrahigh‐Q 1D photonic crystal nanocavities fabricated on 300 mm SOI CMOS platform, Laser Photon Rev. 15 (2021) 2000317. DOI: 10.1002/lpor.202000317
  30. Hosseinzadeh Sani, M., Saghaei, H., Mehranpour, M.A., Asgariyan Tabrizi, A.: A novel all-optical sensor design based on a tunable resonant nanocavity in photonic crystal microstructure applicable in MEMS accelerometers. Photonic Sens. 11, 457–471 (2021). DOI:10.1007/s13320-020-0607-0
  31. Kassa-Baghdouche, L.: Optical properties of a point-defect nanocavity-based elliptical-hole photonic crystal for mid-infrared liquid sensing. Phys. Scr. 95, 015502 (2019)DOI: 10.1088/1402-4896/ab474a
  32. Zare, Seyed Mohammad, et al. "Efficient side-coupling configuration for photonic crystal nanobeam cavities with micro-ring resonators." Optical and Quantum Electronics 56.4 (2024): 692.‏ DOI: 10.1007/s11082-024-06478-5