Direct-Written AgNP Electrodes in All-Solution-Processed Low-Voltage Organic Thin Film Transistors Employing High-k PVP Dielectric
- School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
- Centre of Excellence for Micro System Technology (MiCTEC), Universiti Malaysia Perlis, Arau, 02600, Perlis, Malaysia
- School of Material and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
- Faculty of Electrical Technology and Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
Received: 2025-03-20
Revised: 2025-06-06
Accepted: 2025-06-21
Published in Issue 2025-08-30
Copyright (c) 2025 Nur Syahadah Yusof, Mohamed Fauzi Packeer Mohamed, Muammar Mohamad Isa, Norhawati Ahmad, Khatijah Aisha Yaacob, Mohd Hendra Hairi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 12
Abstract
Researchers have explored various fabrication methods for organic devices to meet the growing demand for printed electronics and wearables. Inkjet printing has been widely used for deposition of solution-processable materials at low temperatures, making it ideal for flexible electronics. However, nozzle clogging and strict ink and substrate requirements limit its commercialization for OTFTs. Besides, the practical applications of OTFT devices are limited by their high operating voltages. To address these limitations, this study proposes a simple, solution-based fabrication method for developing low-voltage OTFTs on Silicon substrates. A novel direct-write printing technique was utilized to deposit the source/drain electrodes at temperatures below 150 °C in ambient conditions without experiencing nozzle clogging issues, while a spin-coating method was employed for the deposition of TIPS-pentacene semiconducting and high-k PVP dielectric layers. Remarkably, the fabricated OTFT achieved a channel length of 120 µm with saturation mobility of 4.49 × 10-1 cm2/Vs, a threshold voltage of –1.5 V, an On/Off current ratio of 108, and a subthreshold swing of 66.8 mV/decade, operating below –5 V. The integration of direct-write printing with a high-k dielectric layer offers a new approach for fabricating OTFTs and other organic devices at lower temperatures, making it suitable for flexible electronics.
Keywords
- Organic Thin Film Transistor,
- OTFT,
- Direct-write printing technique,
- TIPS-pentacene,
- PVP,
- PET,
- Low-voltage,
- Flexible,
- Semiconductor devices
References
- N. S. Yusof, M. F. P. Mohamed, N. A. Ghazali, M. F. A. J. Khan, S. Shaari, and M. N. Mohtar, “Evolution of solution-based organic thin-film transistor for healthcare monitoring– from device to circuit integration: A review.”. Alexandria Engineering Journal, 61(12):11405–11431, 2022. DOI: https://doi.org/10.1016/j.aej.2022.05.013.
- H. J. Kwon et al., “Molecular engineering of printed semiconducting blends to develop organic integrated circuits: crystallization, charge transport, and device application analyses.”. ACS Applied Materials & Interfaces, 14(20):23678–23691, 2022. DOI: https://doi.org/10.1021/acsami.2c02032.
- N. Lago, M. Buonomo, F. Prescimone, S. Toffanin, M. Muccini, and A. Cester, “Direct comparison of the effect of processing conditions in electrolyte-gated and bottom-gated TIPS-pentacene transistors.”. Electronic Materials,3(4):281–290, 2022. DOI: 10.3390/electronicmat3040024.
- Y. Shi, J. Liu, Y. Hu, W. Hu, and L. Jiang, “Effect of contact resistance in organic field‐effect transistors.”. Nano Select, 2(9):1661–1681, 2021. DOI: https://doi.org/10.1002/nano.202000059.
- N. Mohammadian and L. A. Majewski, “High capacitance dielectrics for low voltage operated OTFTs.”. IntechOpen, 2020. DOI: 10.5772/intechopen.91772.
- S. Kim, J. Seo, J. Choi, and H. Yoo, “Vertically integrated electronics: new opportunities from emerging materials and devices.”. Nano-Micro Letters, 14:201, 2022. DOI: https://doi.org/10.1007/s40820-022-00942-1.
- J. Choi and H. Yoo, “Combination of polymer gate dielectric and two-dimensional semiconductor for emerging field-effect transistors.”. Polymers, 15(6):1395, 2023. DOI: https://doi.org/10.3390/polym15061395.
- W. Tang, L. Feng, J. Zhao, Q. Cui, S. Chen, and X. Guo, “Inkjet printed fine silver electrodes for all-solution-processed low-voltage organic thin film transistors.”. Journal of Materials Chemistry C, 2(11):1995–2000, 2014. DOI: https://doi.org/10.1039/C3TC32134G.
- R. Tao, H. Ning, J. Chen, J. Zou, Z. Fang, and C. Yang, “Inkjet printed electrodes in thin film transistors.”. IEEE Journal of Electron Device Society, 6:774–790, 2018. DOI: 10.1109/JEDS.2018.2852288.
- R. S. Massey, X. Song, and R. Prakash, “Direct printed flexible organic thin-film transistors with cross-linked PVA-carrageenan gate dielectric.”. IEEE Sensors Letters, 7(5): 4500804, 2023. DOI: 10.1109/LSENS.2023.3271061.
- A. Martinelli, A. Nitti, R. Po, and D. Pasini, “3D Printing of layered structures of metal-ionic polymers: recent progress, challenges and opportunities.”. Materials, 16(15):5327, 2023. DOI: https://doi.org/10.3390/ma16155327.
- N. S. Yusof, M. F. P. Mohamed, N. A. Ghazali, M. F. A. J. Khan, M. Z. Pakhuruddin, and S. Shaari, “All solution processable OTFT-based on direct-written printing method towards flexible electronics applications.”. Journal of Advanced Research in Applied Sciences and Engineering Technology, 41(2):93–101, 2024. DOI: https://doi.org/10.37934/araset.41.2.93101.
- N. S. Yusof, M. F. P. Mohamed, N. A. Ghazali, M. K. Ishak, and S. Shaari, “Direct-written silver electrodes for all-solution-processed low-voltage organic thin film transistors towards flexible electronics applications.”. Journal of Advanced Research in Micro and Nano Engineering, 21(1):75–88, 2024. DOI: https://doi.org/10.37934/armne.21.1.7588.
- Z. Hou, H. Lu, Y. Li, L. Yang, and Y. Gao, “Direct ink writing of materials for electronics-related applications: a mini review.”. Frontiers in Materials, 8:647229, 2021. DOI: 10.3389/fmats.2021.647229.
- J. P. Hong, A. Y. Park, S. Lee, J. Kang, N. Shin, and D. Y. Yoon, “Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors.”. Applied Physics Letters, 92(14):143311, 2008. DOI: https://doi.org/10.1063/1.2907691.
- S. Y. Cho, J. M. Ko, J. Lim, J. Y. Lee, and C. Lee, “Inkjet-printed organic thin film transistors based on TIPS pentacene with insulating polymers.”. Journal of Materials Chemistry C, 1(5):914–923, 2013. DOI: https://doi.org/10.1039/C2TC00360K.
- S. Wageh, W. Boukhili, A. S. Alshammari, and A. Al-Ghamdi, “Experiment study and analytical modeling of fully solution processed organic thin film transistors with conductive polymer top-gate electrode: Performance optimization.”. Materials Science in Semiconductor Processing, 157:107325, 2023. DOI: https://doi.org/10.1016/j.mssp.2023.107325.
- Z. Zhang, Z. He, S. Bi, and K. Asare-Yeboah, “Phase segregation controlled semiconductor crystallization for organic thin film transistors.”. Journal of Science: Advanced Materials and Devices, 5(2):151–163, 2020. DOI: https://doi.org/10.1016/j.jsamd.2020.05.004.
- S. Jakher and R. Yadav, “Organic thin film transistor review based on their structures, materials, performance parameters, operating principle, and applications.”. Microelectronic Engineering, 290:112193, 2024. DOI: https://doi.org/10.1016/j.mee.2024.112193.
- M. Geiger et al., “Effect of the degree of the gate-dielectric surface roughness on the performance of bottom-gate organic thin-film transistors.”. Advanced Materials Interfaces, 7(10):1902145, 2020. DOI: https://doi.org/10.1002/admi.201902145.
- A. Demir, S. Baʇci, S. E. San, and Z. Doʇruyol, “Pentacene-based organic thin film transistor with SiO2 gate dielectric.”. Surface Reviews and Letters, 22(3):1550038, 2015. DOI: https://doi.org/10.1142/S0218625X15500389.
- C. C. Hung and Y. J. Lin, “Effects of (NH4)2Sx treatment on the surface properties of SiO2 as a gate dielectric for pentacene thin-film transistor applications.”. Materials Research Express, 5:015101, 2018. DOI: 10.1088/2053-1591/aaa09d.
- A. Verma, V. N. Mishra, and R. Prakash, “A self-aligned, solution-processed low-voltage operated organic thin-film transistor for ammonia gas sensing at room temperature.”. IEEE Sensors Journal, 23(6):5561–5568, 2023. DOI: 10.1109/JSEN.2023.3236438.
- L. Feng, W. Tang, X. Xu, Q. Cui, and X. Guo, “Ultralow-voltage solution-processed organic transistors with small gate dielectric capacitance.”. IEEE Electron Device Letters, 34(1):129–131, 2013. DOI: 10.1109/LED.2012.2227236.