Integrated Sensing and Communication-Assisted Orthogonal Time Frequency Space in a Non-Guard Band-Orthogonal Multiple Access Downlink Architecture for Vehicle-to-Infrastructure Networks
- Department of Electrical Engineering, Yazd University, Yazd, Iran
Received: 2025-04-30
Revised: 2025-05-29
Accepted: 2025-07-18
Published in Issue 2025-08-26
Copyright (c) 2025 Ghasem Saeidi, Hamid Saeedi-Sourck (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 45
Abstract
Orthogonal time frequency space (OTFS) modulation has emerged as a robust solution for high-mobility wireless communication and radar sensing by leveraging the delay-Doppler (DD) domain. This paper tackles challenges in resource allocation and multi-user interference (MUI) suppression in integrated sensing and communication (ISAC)-enabled vehicle-to-infrastructure (V2I) networks. We leverage a non-guard band-orthogonal multiple access (non-GB-OMA) scheme using interleaved DD-domain resource allocation with zero padding (ZP), thereby eliminating guard bands and reducing MUI. A two-dimensional (2D) correlation-based radar sensing method with an adaptive threshold detects user terminals (UTs), enabling UT-aware downlink resource allocation, channel estimation, and data detection. Channel estimation is treated as a sparse signal recovery problem, solved via the subspace pursuit (SP) algorithm using structured pilot patterns, a dedicated frame structure, and a specific external phase matrix. Furthermore, to combat high peak-to-average power ratio (PAPR) in OTFS systems, we employ low-power Zadoff-chu (Zch) and quadrature amplitude modulation (QAM) pilot sequences that maintain orthogonality and accuracy. Eventually, a two-stage feedback mechanism adapts the block linear-minimum mean square error (BL-MMSE) detector for data recovery. The proposed framework effectively manages PAPR, inter-symbol interference (ISI), and MUI, enhancing V2I communication reliability and efficiency under high mobility. Simulation results demonstrate improved SNR and BER performance.
Keywords
- Orthogonal time frequency space,
- Integrated sensing and communication,
- Orthogonal multiple access,
- Channel estimation,
- Data detection
References
- M. Elsharief, S. R. Sabuj, and H.-S. Jo, “Advanced resource management strategies for next-generation 6G autonomous vehicular networks, ” 2024 15st International Conference on Information and Communication Technology Convergence (ICTC)}., Jeju Island, South Korea, pp. 607-608, Oct. 2024, doi: 10.1109/ICTC62082.2024.10827047.
- K. Ntontin, E. Lagunas, J. Querol, J. Rehman, J. Grotz, S. Chatzinotas, B. Ottersten, “A Vision, Survey, and Roadmap Toward Space Communications in the 6G and Beyond Era,” Proceedings of the IEEE, 2025, pp. 1-37. 2025, doi: 10.1109/JPROC.2024.3512934.
- A. Jafri and M. Jafri, “The Development of Mobile Communications in 5G and 6G,” Majlesi Journal of Electrical Engineering, vol. 15, no. 2, pp. 7-14, 2021, doi: https://doi.org/10.52547/mjtd.10.2.87
- P. Rajalakshmi, “Towards 6G V2X sidelink: survey of resource allocation-mathematical formulations, challenges, and proposed solutions,” IEEE Open J. Veh. Technol., vol. 5, pp. 344–383, 2024, doi: 10.1109/OJVT.2024.3368240.
- Y. Cui, F. Liu, X. Jing, J. Mu, “Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges,” IEEE Network, 35(5), pp. 158–167, 2021, doi: 10.1109/MNET.010.2100152.
- W. Yuan, Z. Wei, S. Li, J. Yuan, D. W. K. Ng, “Integrated sensing and communication-assisted orthogonal time frequency space transmission for vehicular networks,” IEEE J. Sel. Topics Signal Process., 15(6), pp. 1515–1528, 2021, doi: 10.1109/JSTSP.2021.3117404.
- C.X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, and Y. Chen, “On the road to 6G: visions, requirements, key technologies and testbeds,” IEEE Commun. Surveys Tuts., 25(2), pp. 905–974, 2nd Quart. 2023, doi: 10.1109/COMST.2023.3249835.
- Z. Z. Yahya, D. M. Ali, and M. Y. Abdallah, “6G automatic modulation classification using deep learning models in the presence of channel noise, CFO, and PN,” Majlesi Journal of Electrical Engineering, vol. 18, no. 4, pp. 1-9, 2024, doi: https://doi.org/10.57647/j.mjee.2024.1804.59.
- R.L. Haupt, Wireless communications systems: an introduction. John Wiley and Sons, New Jersey, 2019, doi: :10.1002/9781119419204.
- N. Daryasafar and O. Borazjani, “Improvement of channel estimation in MIMO-OFDM using improved LS algorithm on multipath channels, ” Majlesi Journal of Electrical Engineering, vol. 10, no. 3, pp. 45-52, Sep. 2016.
- Z. Mohammadian, M. Shahabinejad, and S. Talebi, “A new full-diversity space-time-frequency block code for MIMO-OFDM system, ” Majlesi Journal of Electrical Engineering, vol. 7, no. 3, pp. 1-7, Sep. 2013.
- S.M. Omar, Z. Kteish, H. Fadel, “Towards an OFDM radar waveform for detection of far located targets with relatively low radar cross sections,” Digit. Signal Process., vol. 114, pp. 103051:1–103051:13, Jul. 2021, doi: 10.1016/j.dsp.2021.103051
- Y. Hong, T. Thaj, E. Viterbo, Delay-Doppler communications: principles and applications. Academic Press, Massachusetts, 2022, doi: https://doi.org/10.1016/C2020-0-01791-3.
- Z. Wei, W. Yuan, S. Li, J. Yuan, G. Bharatula, R. Hadani, L. Hanzo, “Orthogonal time-frequency space modulation: A promising next-generation waveform,” IEEE wireless commun., 28(4), pp. 136-144, 2021, doi:10.1109/MWC.001.2000408.
- S. Li, Y. Weijie, W. Zhiqiang, H. Ruisi, A. Bo, B. Baoming, Y. Jinhong, “A Tutorial to Orthogonal Time Frequency Space Modulation for Future Wireless Communications,” 2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Xiamen, China, pp. 439-443, 2021, doi: 10.1109/ICCCWorkshops52231.2021.9538891.
- Z. Wei, S. Li, W. Yuan, R. Schober, G. Caire, “Orthogonal time frequency space modulation-part I: Fundamentals and challenges ahead,” IEEE Communications Lett., 27(1), pp. 4-8, 2022, doi: 10.1109/LCOMM.2022.3209689.
- F. Lampel, A. Alvarado, F.M. Willems, “Orthogonal time frequency space modulation: A discrete Zak transform approach,” Entropy 24(12), 2022. Available online: https://www.mdpi.com/1099-4300/24/12/1704, doi: https://doi.org/10.3390/e24121704.
- A. Farhang, A. RezazadehReyhani, L.E. Doyle, B. Farhang-Boroujeny, “Low complexity modem structure for OFDM-based orthogonal time frequency space modulation,” IEEE Wireless Communications Lett., 7(3), pp. 344–347, 2017, doi: 10.1109/LWC.2017.2776942.
- S. R. Sabuj, and H.-S. Jo. , “A Complex Wavelet-Based OTFS Scheme for LEO Satellite Communication,” in IEEE Access, vol. 13, pp. 85807-85825, 2025, doi: 10.1109/ACCESS.2025.3569789.
- R. S. Almabrouk and I. M. M. Mohamed, “An Approach for 5G Implementation in Railways Based on Orthogonal Time Frequency Space Modulation,” Majlesi Journal of Electrical Engineering, vol. 19, no. 1, pp. 1-9, Mar. 2025, doi: 10.57647/j.mjee.2025.1901.17.
- P. Raviteja, Y. Hong, E. Viterbo, E. Biglieri, “Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Technol., 68(1), pp. 957-961. 2018, doi: 10.1109/TVT.2018.2878891.
- S. Li, P. Jung, W. Yuan, Z. Wei, J. Yuan, B. Bai, G. Caire, “Fundamentals of delay-Doppler communications: Practical implementation and extensions to otfs,” 2024, doi : https://doi.org/10.48550/arXiv.2403.14192. Available online: https:// https://arxiv.org/abs/2403.14192.
- S.K. Mohammed, “Derivation of OTFS modulation from first principles,” IEEE Trans. Veh. Technol, 70(8), pp. 7619-7636, 2021, doi: 10.1109/TVT.2021.3069913.
- L. Gaudio, M. Kobayashi, G. Caire, G. Colavolpe, “On the effectiveness of OTFS for joint radar parameter estimation and communication,” IEEE Trans. Wireless Commun., 19(9), pp.5951–5965, 2020, doi: 10.1109/TWC.2020.2998583.
- P. Raviteja, K. T. Phan, Y. Hong and E. Viterbo, “Orthogonal time frequency space (OTFS) modulation based radar system,” 2019 IEEE Radar Conf., (RadarConf), pp. 1–6, 2019, doi: 10.1109/RADAR.2019.8835764.
- M. F. Keskin, H. Wymeersch, A. Alvarado, “Radar sensing with OTFS: Embracing ISI and ICI to surpass the ambiguity barrier,” 2021 IEEE Int. Conf. Commun. Work. ICC Work., 2021- Proc., 2021, doi: 10.1109/ICCWorkshops50388.2021.9473534.
- Z. Tang, L. Yu, “A Method of Interference Suppression in Integrated OTFS Communication and Sensing Systems,” IEEE Access., pp.144044–144054, 2024, doi: 10.1109/ACCESS.2024.3470896.
- F. Liu, C. Masouros, Y. C. Eldar, Integrating sensing and communication. Springer, 2023, doi: https://doi.org/10.1007/978-981-99-2501-8
- K. Zhang, Z. Li, W. Yuan, Y. Cai, F Gao, “Radar sensing via OTFS signaling,” China Communications., 20(9), pp. 34–45, 2023, doi: 10.23919/JCC.fa.2023-0060.202309.
- J. Zhang, L Cai, H. Liu, “Integrated sensing and communication via orthogonal time frequency space signaling with hybrid message passing detection and fractional parameter estimation,” Sensors., 23(24), 9874, 2023, doi: https://doi.org/10.3390/s23249874. Available online: https://www.mdpi.com/1099-4300/25/9/1358.
- T. Long, Y. Weijie, Z. Xiaoqi, Z. Kecheng, L. Zhongjie,L. Yonghui, “DNN-Based Radar Target Detection With OTFS,” IEEE Transactions J. Vehicular Technology., pp. 1–6, 2024, doi: 10.1109/TVT.2024.3408059.
- M. Delamou, A. Bazzi, M. Chafii, and E. M. Amhoud, “Deep learning-based estimation for multitarget radar detection,” in Proc. IEEE 97th Veh. Technol. Conf. (VTC2023-Spring), Florence, Italy, pp. 1–5, 2023, doi: 10.1109/VTC2023-Spring57618.2023.10200157.
- A. Bazzi, M. Chafii, “On integrated sensing and communication waveforms with tunable PAPR, ” IEEE Trans. Wireless Commun. , 22(11), pp. 7345–7360, Nov. 2023, doi: 10.1109/TWC.2023.3250263.
- P. Raviteja, K.T. Phan, Y. Hong, “Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels,” IEEE Trans. Veh. Technol, 68(5), pp. 4906-4917, May 2019, doi: 10.1109/TVT.2019.2906357.
- S.G. Neelam, P. Sahu, “Channel estimation and data detection of OTFS system in the presence of receiver IQ imbalance,” in 2021 National Conference on Communications (NCC), pp. 1-6, 2021, doi: 10.1109/NCC52529.2021.9530106.
- Y. Liu, S. Zhang, F. Gao, J. Ma, X. Wang, “Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system,” IEEE J. Select. Areas Commun., 40(1), pp. 5–36, Jan. 2022, doi: 10.1109/JSAC.2020.3000884.
- Y. Liu, Y.L. Guan, D. Gonz´alez, “Near-optimal bem OTFS receiver with low pilot overhead for high-mobility communications,” IEEE Tran. Commun., 70(5), pp. 3392-3406, 2022, doi: 10.1109/TCOMM.2022.3162257.
- T. Thaj, E. Viterbo, Y. Hong, “Orthogonal time sequence multiplexing modulation: Analysis and low-complexity receiver design,” IEEE Trans. Wireless Commun., 20(12), pp. 7842-7855, 2021, doi: 10.1109/TWC.2021.3088479.
- X. Zhang, H. Wen, Z. Yan, W. Yuan, J. Wu, and Z. Li, “A novel joint channel estimation and symbol detection receiver for orthogonal time frequency space in vehicular networks,” Entropy, 25(9), 2023, https://doi.org/10.3390/e25091358. Available online: https://www.mdpi.com/1099-4300/25/9/1358.
- Q. Li, Y. Gong, F. Meng, Z. Li, L. Miao and Z. Xu, “Residual learning based channel estimation for OTFS system,” 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops)., Sanshui, Foshan, China, pp. 275–280, 2022, doi: 10.1109/ICCCWorkshops55477.2022.9896637.
- M.K. Ramachandran, A. Chockalingam, “MIMO-OTFS in high-Doppler fading channels: Signal detection and channel estimation,” 2018 IEEE Global Communications Conference (GLOBECOM), IEEE, pp. 206-212, 2018, doi: 10.1109/GLOCOM.2018.8647394
- O.A. Aghda, M.J. Omidi, H. Saeedi-Sourck, “Superimposed channel estimation in OTFS modulation using compressive sensing,” 2023 31st International Conference on Electrical Engineering (ICEE), Tehran, Iran, Islamic Republic of, pp. 756-761, 2023, doi: 10.1109/ICEE59167.2023.10334727.
- H. B. Mishra, P. Singh, A. K. Prasad and R. Budhiraja, “OTFS channel estimation and data detection Designs with superimposed pilots,” IEEE Trans. Wireless Commun, 21(4), pp. 2258-2274, 2022, doi: 10.1109/TWC.2021.3110659.
- S. Rakib and R. Hadani, “Multiple access in wireless telecommunications system for high-mobility applications,” U.S. Patent 9 722 741 B1, Aug. 2017.
- R.M. Augustine, A. Chockalingam, “Interleaved time-frequency multiple access using OTFS modulation,” 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), pp. 1-5, 2019, doi: 10.1109/VTCFall.2019.8891404.
- V. Khammammetti, S.K. Mohammed, “OTFS-based multiple-access in high Doppler and delay spread wireless channels,” IEEE Wireless Communications Lett., 8(2), pp. 528–531, 2018, doi: 10.1109/LWC.2018.2878740.
- V. Khammammetti, S.K. Mohammed, “Spectral efficiency of OTFS based orthogonal multiple access with rectangular pulses,” IEEE Transactions J. Vehicular Technology., vol. 71(12), pp. 12989–13006, 2022, doi: 10.1109/TVT.2022.3199478.
- Z. Ding, R. Schober, P. Fan, H.V. Poor, “OTFS-NOMA: An efficient approach for exploiting heterogeneous user mobility profiles,” IEEE Trans. Commun., 67(11), pp. 7950-7965, 2019, doi: 10.1109/TCOMM.2019.2932934.
- K. Deka, A. Thomas, S. Sharma, “OTFS-SCMA: a code-domain NOMA approach for orthogonal time frequency space modulation,” IEEE Tran. Commun., 69(8), pp. 5043-5058, 2021, doi: 10.1109/TCOMM.2021.3075237.
- B.C. Pandey, S.K. Mohammed, P. Raviteja, Y. Hong, E. Viterbo, “Low complexity preceding and detection in multi-user massive MIMO OTFS downlink,” IEEE trans. Veh. Technol., 70(5), pp. 4389-4405, 2021, doi: https://doi.org/10.48550/arXiv.2011.12241
- G. Saeidi, H. Saeedi-sourk, “A ZP-OTFS-based interleaved non-GB-OMA method for uplink communication,” 2024, doi: https://doi.org/10.21203/rs.3.rs-3821149/v1. Available: https://www.researchsquare.com/article/rs-3821149/v1.
- W. Dai, O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE transactions J. Information Theory., 55(5), pp. 2230–2249, 2009, doi: 10.1109/TIT.2009.2016006.
- W. Yuan, Z. Wei, S. Li, J. Yuan, D.W.K. Ng, “Integrated sensing and communication-assisted orthogonal time frequency space transmission for vehicular networks,” IEEE J. Sel. Topics Signal Process., 15(6), pp. 1515–1528, 2021, doi: 10.1109/JSTSP.2021.3117404.
- W. Yuan, S. Li, Z. Wei, J. Yuan, D.W.K. Ng, “Data-aided channel estimation for OTFS systems with a superimposed pilot and data transmission scheme, ” IEEE Wireless Communications Lett., 10(9), pp. 1954-1958 , 2021, doi: 10.1109/LWC.2021.3088836.