Achieving High-Pressure Pulsed Avalanche Homogeneous Discharges through Surface Plasma Pre-ionization: A Study of Optimization and Characterization to improve CO2 laser performance
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
Received: 2024-11-03
Revised: 2025-01-03
Accepted: 2025-01-07
Published 2025-02-10
Copyright (c) 2025 Behrooz Hajilooei, Pourya Seyfi, Hamid Ghomi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 53
Abstract
In this paper the necessary requirements on surface plasma pre-ionization for the creation of high-pressure pulsed avalanche homogeneous discharges are analyzed. In this study, three factors were optimized to achieve a glow discharge in the laser gap. Initially, the upper electrode of the laser was developed according to the coding provided by Ernst Profile. Subsequently, the most efficient laser electrode was constructed through simulation. Secondly, a novel pre-ionization technique is employed on the lower electrode of the laser in order to establish a uniform distribution of surface plasma pre-ionization. During this phase, five distinct electrode types underwent testing, and it was found that the electrode featuring islands with external and internal diameters of 3 and 1 mm was the most optimal electrode, respectively, given a maximum laser output energy of 394 mj. And finally, the maximum laser output energy for each pulse was measured as 394 mj in the 3-1-1 helium-carbon dioxide-nitrogen gas combination. This particular method of pre ionization using surface plasma is ideal for situations with large volumes and high pressures, where traditional pre-ionization methods such as spark arrays or corona discharge do not work effectively.
Keywords
- Surface plasma,
- Pre-ionization,
- Avalanche,
- Glow discharge,
- Laser,
- Spark arrays
References
- Lu, Xinpei, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, and Chunqi Jiang. "On the chronological understanding of the homogeneous dielectric barrier discharge." High Voltage 8, no. 6 (2023): 1132-1150.
- Tian, Wei, and Mark J. Kushner. "Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue." Journal of Physics D: Applied Physics 47, no. 16 (2014): 165201.
- Ayan, Halim, Gregory Fridman, Alexander F. Gutsol, Victor N. Vasilets, Alexander Fridman, and Gary Friedman. "Nanosecond-pulsed uniform dielectric-barrier discharge." IEEE transactions on plasma science 36, no. 2 (2008): 504-508.
- Zhiyu, L. I., L. I. U. Dawei, L. U. Xinpei, and N. I. E. Lanlan. "A homogeneous atmospheric pressure air plasma in a 10 mm gap based on a three-electrode configuration." Plasma Science and Technology 25, no. 10 (2023): 105402.
- Beaulieu, A. J. "Transversely excited atmospheric pressure CO2 lasers." Applied Physics Letters 16, no. 12 (1970): 504-505.
- Laurie, K., and M. Hale. "Folded-path atmospheric-pressure CO 2 laser." IEEE Journal of Quantum Electronics 6, no. 8 (1970): 530-532.
- Pearson, P., and H. Lamberton. "Atmospheric pressure CO 2 lasers giving high output energy per unit volume." IEEE Journal of Quantum Electronics 8, no. 2 (1972): 145-149.
- Ewing, J. J. "Excimer laser technology development." IEEE Journal of selected topics in quantum electronics 6, no. 6 (2000): 1061-1071.
- Osborne, M. R. "Preionization electron density and ion decay measurements in an x‐ray preionized rare‐gas‐fluoride laser." Journal of applied physics 63, no. 1 (1988): 32-37.
- Nilsson, J. O., and J. F. Eninger. "Numerical Modelling Of Ozone Production In A Pulsed Homogeneous Oxygen Discharge." In Proceedings of 1994 IEEE 21st International Conference on Plasma Sciences (ICOPS), pp. 99-99. IEEE, 1994.
- Brenning, Nils, I. Axnas, J. Olof Nilsson, and Jan E. Eninger. "High-pressure pulsed avalanche discharges: formulas for required preionization density and rate for homogeneity." IEEE transactions on plasma science 25, no. 1 (1997): 83-88.
- Osipov, Vladimir Vasil'evich. "Self-sustained volume discharge." Physics-Uspekhi 43, no. 3 (2000): 221.
- Bollanti, Sarah, Tommaso Letardi, and C. H. E. N. G. E. N. Zheng. "Effect of preionization on uniformity of photo-triggered XeCl laser discharges: modeling and comparison with experimental results." IEEE transactions on plasma science 19, no. 2 (1991): 361-368.
- Zuo, Duluo, Hong Lu, and Zuhai Cheng. "Studies on a 100-joule-class UV-pre-ionized TEA CO2 laser." In XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, vol. 5777, pp. 442-445. SPIE, 2005.
- Wan, Chongyi, Shiming Liu, Rongqing Tan, Jin Wu, Jinwen Zhou, Yan Lv, Yanning Yu, and Hua Yang. "Power scaling of printed-circuit-board preionized TEA CO2 laser up to 3.6 kW." Optics & Laser Technology 36, no. 8 (2004): 647-649.
- Kumar, Manoj, T. Reghu, A. K. Biswas, Pankaj Bhargav, J. S. Pakhare, Shailesh Kumar, Abrat Verma, Vagesh Mandloi, and L. M. Kukreja. "Development of a 1 J short pulse tunable TEA CO2 laser with high energy stability." Optics & Laser Technology 64 (2014): 64-71.
- Von Bergmann, Hubertus M., Andrew Forbes, Ted Roberts, and Lourens R. Botha. "Acoustic waves in transversely excited atmospheric CO 2 laser discharges: effect on performance and reduction techniques." Optical Engineering 47, no. 8 (2008): 084202-084202.
- Yu, Yanning, Chongyi Wan, Yan Lv, Rongqing Tan, Jinwen Zhou, Shiming Liu, and Chong Zhao. "A 3 kW average power tunable TEA CO2 laser." Optics & Laser Technology 37, no. 7 (2005): 560-562.
- Oreshkin, Viktor Fedorovich, Aleksandr M. Seregin, Vladislav Viktorovich Sinaiskii, Aleksandr Razumnikovich Sorokin, and Tat'yana Artemovna Shchetinkina. "Pulsed CO2 laser with an X-ray preioniser based on a high-voltage low-pressure glow discharge." Quantum Electronics 33, no. 12 (2003): 1043.
- Bonnie, R. J. M., and W. J. Witteman. "High pressure X-ray preionized TEMA-CO 2 laser." Applied Physics B 44 (1987): 37-39.
- Apollonov, Victor V., K. Kh Kazakov, N. V. Pletnyev, Vladimir R. Sorochenko, A. V. Astakhov, Gennady A. Baranov, A. A. Kuchinsky, and V. P. Tomashevich. "Superatmospheric X-ray preionized TE-CO2 discharge unit." In XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, vol. 4184, pp. 317-322. SPIE, 2001.
- Alekseev, Sergei Borisovich, Viktor M. Orlovskii, and Viktor F. Tarasenko. "Atmospheric-pressure CO2 laser with an electron-beam-initiated discharge produced in a working mixture." Quantum Electronics 33, no. 12 (2003): 1059.
- Xiong, Zhongmin, and Mark J. Kushner. "Surface corona-bar discharges for production of pre-ionizing UV light for pulsed high-pressure plasmas." Journal of Physics D: Applied Physics 43, no. 50 (2010): 505204.
- Bahrampour, Alireza, Robabeh Fallah, Alireza A. Ganjovi, and Abolfazl Bahrampour. "Theoretical investigation of dielectric corona pre-ionization TEA nitrogen laser based on transmission line method." Optics & Laser Technology 39, no. 5 (2007): 1014-1019.
- Ghorbanzadeh, Atamalek, Nahid Pakmanesh, Ali Rastegari, Pedram Abdolghader, Peyman Feizollah, and Neda Siadati. "Surface plasma preionization produced on a specially patterned PCB and its application in a pulsed CO2 laser." Optics & Laser Technology 78 (2016): 83-86.
- Lotfalipour, R., A. M. Ghorbanzadeh, and A. Mahdian. "Methane conversion by repetitive nanosecond pulsed plasma." Journal of Physics D: Applied Physics 47, no. 36 (2014): 365201.
- Krasik, Ya E., S. Gleizer, P. Nozar, and C. Taliani. "Pressure and electron energy measurements in a channel spark discharge." Plasma Devices and Operations 15, no. 2 (2007): 107-114.
- Cranmer, Steven R. "Coronal heating versus solar wind acceleration." arXiv preprint astro-ph/0409724 (2004).
- Chen, Junhong, and Jane H. Davidson. "Model of the negative DC corona plasma: Comparison to the positive DC corona plasma." Plasma chemistry and plasma processing 23 (2003): 83-102.