10.57647/j.jtap.2025.1901.08

Secure optical image encryption and authentication based on phase information and Collins diffraction transform

  1. General Directorate of Education in Basrah, Ministry of Education, Iraq
  2. Department of Physics, College of Science, University of Basrah, Iraq

Received: 2024-11-20

Revised: 2024-12-30

Accepted: 2025-01-03

Published 2025-02-10

How to Cite

1.
MOHAMMED QASIM I, ABDULZAHRA MOHAMMED E. Secure optical image encryption and authentication based on phase information and Collins diffraction transform. J Theor Appl phys. 2025 Feb. 10;19(01):1-10. Available from: https://oiccpress.com/jtap/article/view/8603

PDF views: 62

Abstract

In this work, an optical asymmetric scheme for image encryption and authentication is proposed. Our proposal uses an information authentication process for phase encrypted data in the Collins diffraction domain. A partial phase component of the optical image encrypted is used in the decryption stage to validate the grayscale encrypted data. Meanwhile, the use of phase component will be facilitating the design and implementation of optical encryption schemes. The limited phase data makes the scheme more secure owing to difficult reorganization of the confidential information. In addition to security increases, a reduction of encrypted data is achieved by selecting some parts of the phase component of the encrypted data for the decryption process. Therefore, this development strategy efficiently facilitates optical information transfer and storage. Numerical simulations verify the resistance of the system against noise, cropping attacks, and potential attacks.

Keywords

  • Optical image encryption,
  • Collins diffraction transform,
  • Phase information,
  • Nonlinear optical correlation

References

  1. Chen, W., Javidi, B., Chen, X.: Advances in optical security systems. Adv. Opt. Photonics. 6, 120–155 (2014). https://doi.org/10.1364/AOP.6.000120
  2. Javidi, B.: Securing information with optical technology. PhysToday. 50, 27–32 (1997). https://doi.org/10.1063/1.881691
  3. Javidi, B., Carnicer, A., Yamaguchi, M., Nomura, T., Pérez-Cabré, E., Millán, M.S., Nishchal, N.K., Torroba, R., Barrera, J.F., He, W., Peng, X., Stern, A., Rivenson, Y., Alfalou, A., Brosseau, C., Guo, C., Sheridan, J.T., Situ, G., Naruse, M., Matsumoto, T., Juvells, I., Tajahuerce, E., Lancis, J., Chen, W., Chen, X., Pinkse, P.W.H., Mosk, A.P., Markman, A.: Roadmap on optical security. J. Opt. 18, 083001 (2016). https://doi.org/10.1088/2040-8978/18/8/083001
  4. Liu, S., Guo, C., Sheridan, J.T.: A review of optical image encryption techniques. Opt. Laser Technol. 57, 327–342 (2014). https://doi.org/10.1016/j.optlastec.2013.05.023
  5. Sachin, Kumar, R., Sakshi, Yadav, R., Reddy, S.G., Yadav, A.K., Singh, P.: Advances in Optical Visual Information Security: A Comprehensive Review. Photonics. 11, 99 (2024). https://doi.org/10.3390/photonics11010099
  6. Refregier, P., Javidi, B.: Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20, 767–769 (1995). https://doi.org/10.1364/ol.20.000767
  7. Unnikrishnan, G., Singh, K.: Double random fractional Fourier-domain encoding for optical security. Opt. Eng. 39, 2853–2859 (2000). https://doi.org/10.1117/1.1313498
  8. Jassim, R.A., Mohammed, E.A.: Asymmetric Optical Cryptosystem in the Fractional Fourier Domain Using Photon Counting Imaging. Basrah J. Sci. 40, 512–525 (2022). https://doi.org/10.29072/basjs.202202178
  9. Hennelly, B.M.: Random phase and jigsaw encryption in the Fresnel domain. Opt. Eng. 43, 2239 (2004). https://doi.org/10.1117/1.1790502
  10. Singh, H., Yadav, A.K., Vashisth, S., Singh, K.: Double phase-image encryption using gyrator transforms, and structured phase mask in the frequency plane. Opt. Lasers Eng. 67, 145–156 (2015). https://doi.org/10.1016/j.optlaseng.2014.10.011
  11. Singh, N., Sinha, A.: Gyrator transform-based optical image encryption, using chaos. Opt. Lasers Eng. 47, 539–546 (2009). https://doi.org/10.1016/j.optlaseng.2008.10.013
  12. Yadav, R., Sachin, Singh, P.: Multiuser medical image encryption algorithm using phase-only CGH in the gyrator domain. J. Opt. Soc. Am. A. 41, A63–A72 (2024). https://doi.org/10.1364/JOSAA.507308
  13. Muniraj, I., Guo, C., Malallah, R., Ryle, J.P., Healy, J.J., Lee, B.-G., Sheridan, J.T.: Low photon count based digital holography for quadratic phase cryptography. Opt. Lett. 42, 2774–2777 (2017). https://doi.org/10.1364/ol.42.002774
  14. Qasim, I.M., Mohammed, E.A.: Optical image encryption based on linear canonical transform with sparse representation. Opt. Commun. 533, 129262 (2023). https://doi.org/10.1016/j.optcom.2023.129262
  15. Sangwan, A., Singh, H.: A Secure Asymmetric Optical Image Encryption Based on Phase Truncation and Singular Value Decomposition in Linear Canonical Transform Domain. Int. J. Opt. 2021, 1–19 (2021). https://doi.org/10.1155/2021/5510125
  16. Girija, R., Singh, H., Abirami, G.: Cryptanalysis of DRPE using complex S-Box based on linear canonical transform. Multimed. Tools Appl. 82, 12151–12166 (2023). https://doi.org/10.1007/s11042-022-13752-9
  17. Mohammed, E.A., Qasim, I.M.: Optical double-image cryptosystem based on a joint transform correlator in a linear canonical domain. Appl. Opt. 63, 5941 (2024). https://doi.org/10.1364/AO.525462
  18. Vilardy O., J.M., Perez, R.A., Torres M., C.O.: Optical Image Encryption Using a Nonlinear Joint Transform Correlator and the Collins Diffraction Transform. Photonics. 6, 115 (2019). https://doi.org/10.3390/photonics6040115
  19. Mohammed, E.A., Qasim, I.M.: Security augmenting of optical cryptosystem based on linear canonical transform domain using a full phase encoding technique. Phys. Scr. 99, 065112 (2024). https://doi.org/10.1088/1402-4896/ad4316
  20. Mehra, I., Nishchal, N.K.: Fingerprint image encryption using phase retrieval algorithm in gyrator wavelet transform domain using QR decomposition. Opt. Commun. 533, 129265 (2023). https://doi.org/10.1016/j.optcom.2023.129265
  21. Anshula, Singh, H.: Ensuring security of cryptosystems with DVFM-, modified equal modulus decomposition in the domain of gyrator wavelet transform. Multimed. Tools Appl. 82, 5965–5985 (2023). https://doi.org/10.1007/s11042-022-13584-7
  22. Qin, W., Peng, X.: Vulnerability to known-plaintext attack of optical encryption schemes based on two fractional Fourier transform order keys and double random phase keys. J. Opt. A Pure Appl. Opt. 11, 075402 (2009). https://doi.org/10.1088/1464-4258/11/7/075402
  23. Nakano, K., Takeda, M., Suzuki, H.: Security analysis of phase-only DRPE based on known-plaintext attack using multiple known plaintext – ciphertext pairs. 53, 6435–6443 (2014). https://doi.org/10.1364/AO.53.006435
  24. Peng, X., Zhang, P., Wei, H., Yu, B.: Known-plaintext attack on optical encryption based on double random phase keys. Opt. Lett. 31, 1044 (2006). https://doi.org/10.1364/OL.31.001044
  25. Carnicer, A., Montes-Usategui, M., Arcos, S., Juvells, I.: Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys. Opt. Lett. 30, 1644 (2005). https://doi.org/10.1364/OL.30.001644
  26. Wu, J., Liu, W., Liu, Z., Liu, S.: Correlated-imaging-based chosen plaintext attack on general cryptosystems composed of linear canonical transforms and phase encodings. Opt. Commun. 338, 164–167 (2015). https://doi.org/10.1016/j.optcom.2014.10.050
  27. Qin, W., Peng, X.: Asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Lett. 35, 118–120 (2010). https://doi.org/10.1364/OL.35.000118
  28. Singh, H., Girija, R., Kumar, M.: A cryptoanalysis of elliptic curve cryptography based on phase truncation in the domain of hybrid gyrator Hartley transform. Opt. Quantum Electron. 55, 487 (2023). https://doi.org/10.1007/s11082-023-04765-1
  29. Zhong, Z., Chang, J., Shan, M., Hao, B.: Fractional Fourier-domain random encoding and pixel scrambling technique for double image encryption. Opt. Commun. 285, 18–23 (2012). https://doi.org/10.1016/j.optcom.2011.08.068
  30. Zhang, R., Xiao, D.: Double image encryption scheme based on compressive sensing and double random phase encoding. Mathematics. 10, 1242 (2022). https://doi.org/10.3390/math10081242
  31. Chai, X., Bi, J., Gan, Z., Liu, X., Zhang, Y., Chen, Y.: Color image compression and encryption scheme based on compressive sensing and double random encryption strategy. Signal Processing. 176, 107684 (2020). https://doi.org/10.1016/j.sigpro.2020.107684
  32. Girija, R., Singh, H.: Enhancing Security of Double Random Phase Encoding Based on Random S-Box. 3D Res. 9, 15 (2018). https://doi.org/10.1007/s13319-018-0165-z
  33. Chen, W., Chen, X., Stern, A., Javidi, B.: Phase-modulated optical system with sparse representation for information encoding and authentication. IEEE Photonics J. 5, 6900113 (2013). https://doi.org/10.1109/JPHOT.2013.2258144
  34. Mohammed, E.A., Saadon, H.L.: Simultaneous verification of optical triple-image encryption using sparse strategy. J. Phys. Conf. Ser. 1234, 012037 (2019). https://doi.org/10.1088/1742-6596/1234/1/012037
  35. Mohammed, E.A., Saadon, H.L.: Sparse phase information for secure optical double-image encryption and authentication. Opt. Laser Technol. 118, 13–19 (2019). https://doi.org/10.1016/j.optlastec.2019.04.035
  36. Pérez-Cabré, E., Cho, M., Javidi, B.: Information authentication using photon-counting double-random-phase encrypted images. Opt. Lett. 36, 22 (2011). https://doi.org/10.1364/ol.36.000022
  37. Wang, W., Wang, X., Xu, B., Chen, J.: Optical image encryption and authentication using phase-only computer-generated hologram. Opt. Lasers Eng. 146, 106722 (2021). https://doi.org/10.1016/j.optlaseng.2021.106722
  38. Chen, J., Zhu, Z. liang, Fu, C., Zhang, L. bo, Zhang, Y.: Information authentication using sparse representation of double random phase encoding in fractional Fourier transform domain. Optik (Stuttg). 136, 1–7 (2017). https://doi.org/10.1016/j.ijleo.2017.02.001
  39. A. Mohammed, E.: Optical information authentication of triple-image encryption. J. Kufa Phys. 10, 60–67 (2018). https://doi.org/10.31257/2018/JKP/100108
  40. Unnikrishnan, G., Singh, K.: Optical encryption using quadratic phase systems. Opt. Commun. 193, 51–67 (2001). https://doi.org/10.1016/S0030-4018(01)01224-X
  41. Markman, A., Javidi, B., Tehranipoor, M.: Photon-counting security tagging and verification using optically encoded QR codes. IEEE Photonics J. 6, 1–9 (2013). https://doi.org/10.1109/JPHOT.2013.2294625
  42. The USC-SIPI Image Database: https://sipi.usc.edu/database.
  43. Pérez-Cabré, E., Mohammed, E.A., Millán, M.S., Saadon, H.L.: Photon-counting multifactor optical encryption and authentication. J. Opt. 17, 025706 (2015). https://doi.org/10.1088/2040-8978/17/2/025706