10.57647/j.jtap.2025.1901.06

A Systematic Study of Polytypism in Melt & Solution Grown Crystals of Cadmium Iodide doped with Anionic & Cationic Impurities

  1. Deshbandhu College, University of Delhi, New Delhi,India.  AND  i-4 Center, Deshbandhu College, University of Delhi, New Delhi, India.

Received: 2024-10-05

Revised: 2024-12-03

Accepted: 2024-12-24

Published 2025-02-10

How to Cite

1.
Tyagi UP, Saxena A, Sharma M. A Systematic Study of Polytypism in Melt & Solution Grown Crystals of Cadmium Iodide doped with Anionic & Cationic Impurities. J Theor Appl phys. 2025 Feb. 10;19(01):1-9. Available from: https://oiccpress.com/jtap/article/view/8601

PDF views: 37

Abstract

Investigations carried out on various polytypic compounds till now have shown that the presence of impurities during the growth affects the formation of polytypes. However, this work has remained broadly qualitative. To assess the role of impurities on polytype growth in a definite manner, it was decided to systematically dope with the purified crystal of richly polytypic compound, viz., CdI2 with cationic and anionic impurities. Such a study was conducted on both the crystals grown from melt and solution. The crystals have been characterized by X-ray diffraction and physical method such as color variation, elasticity, shape appearance and optical measurements. The results have been discussed.

Keywords

  • Polytypism,
  • Doped Crystals,
  • Zone-refining,
  • X-ray diffraction,
  • Streaking,
  • Arcing

References

  1. Ito, Tomonori, Toru Akiyama, and Kohji Nakamura. Journal of crystal growth, 362, 207-210, (2013). https://doi.org/10.1016/j.jcrysgro.2012.07.031.
  2. N. Shaikh, H. V. Annadata, A. K. Mishra, R. R. Urkude, I. Mukhopadhyay, and A. Ray, Applied Surface Science, 649, 159195, (2024). https://doi.org/10.1016/j.apsusc.2023.159195
  3. Z, Rebaoui, W. B. Bouiajra, M. A. Abid, A., Saidane, D. Jammel, M. Henini, and J. F. Felix, Microelectronic Engineering, 171, 11-19, (2017). https://doi.org/10.1016/j.mee.2017.01.010
  4. D. Zagorac, J. Zagorac, J. C. Schön, N. Stojanović, and B. Matović, Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 74(6), 628-642, (2018). https://doi.org/10.1107/S2052520618014099
  5. Zhang, M. X., & Kelly, P. M. Progress in Materials Science, 54(8), 1101-1170, (2009). https://doi.org/10.1016/j.pmatsci.2009.06.001.
  6. S. K. Chaudhary and G. C. Trigunayat, Cryst. Res. and Tech. 17, 465 (1982). https://doi.org/10.1002/crat.2170170411.
  7. V. S. Harutyunyan, Materials Research Express, 7(2), 026301, (2020). DOI: 10.1088/2053-1591/ab6fa9.
  8. I. Novosad, B. Kalivoshka, S. Novosad, and A. Vas' kiv, In 2019 XIth International Scientific and Practical Conference on Electronics and Information Technologies (ELIT) (pp. 291-294). (2019, September), IEEE. DOI: 10.1109/ELIT.2019.8892304
  9. U. P. Tyagi and G. C. Trigunayat, Phase Transition 16, 537 (1989). https://doi.org/10.1080/01411598908245728.
  10. S. K. Chaudhary, and H. Kaur, In Journal of Physics: Conference Series (Vol. 226, No. 1, p. 012017). IOP Publishing, (2010, April). DOI 10.1088/1742-6596/226/1/012017
  11. B. Kumar and G. C. Trigunayat, Phase Transition 43, 145-152 (1993). https://doi.org/10.1080/01411599308207808
  12. B. Kumar and G. C. Trigunayat, Acta Cryst A 47, 263-267 (1991). https://doi.org/10.1107/S0108767390013836
  13. D. O. Charkin, V. A. Dolgikh, T. A. Omelchenko, Y. A. Vaitieva, S. N. Volkov, D. V. Deyneko and S. M. Aksenov, Symmetry 14 (10), 2087 (2022). https://doi.org/10.3390/sym14102087.
  14. E. H. Wolpert, S. J. Cassidy and A. L. Goodwin, Phys. Rev. Materials 7, 093605 (2023). https://doi.org/10.1103/PhysRevMaterials.7.093605.
  15. Momin, M. A., Islam, M. A., Nesa, M., Sharmin, M., Rahman, M. J., & Bhuiyan, A. H. AIP Advances, 11(5), 055203 (2021). https://doi.org/10.1063/5.0050145
  16. S. Kumar, F. Fossard, G. Amiri, Jean-Michel Chauveau and V. Sallet, Nanomaterials (Basel) 12(14): 2323 (2022). https://doi.org/10.3390/nano12142323
  17. Wendt, U. (2021). Engineering materials and their properties. Springer Handbook of Mechanical Engineering, 233-292. Engineering Materials and Their Properties | SpringerLink
  18. Ershova, I. V., Meshcheryakova, I. N., Trofimova, O. Y., Pashanova, K. I., Arsenyeva, K. V., Khamaletdinova, N. M., ... & Piskunov, A. V. Inorganic Chemistry, 60(16), 12309-12322, (2021). https://doi.org/10.1021/acs.inorgchem.1c01514
  19. Fedorov, P. P., Popov, A. I., & Simoneaux, R. L. Russian Chemical Reviews, 86(3), 240, (2017). https://doi.org/10.1070/RCR4609
  20. Schlüter, M., & Cohen, M. L. Physical Review B, 14(2), 424 (1976). https://doi.org/10.1103/PhysRevB.14.424
  21. Vainshtein, B. K., Fridkin, V. M., & Indenbom, V. L. Modern crystallography II: Structure of crystals (Vol. 21), (1982). Berlin/Heidelberg, Germany: Springer.
  22. Tang, M., Carter, W. C., & Cannon, R. M. Physical Review B—Condensed Matter and Materials Physics, 73(2), 024102, (2006). https://doi.org/10.1103/PhysRevB.73.024102.
  23. P. C. Jain and G. C. Trigunayat, Journal of Crystal Growth, 48(1), 107-113 (1980). https://doi.org/10.1016/0022-0248(80)90199-2.
  24. S. Nishizawa, Frédéric Mercier, Journal of Crystal Growth, 518, pp.99-102 (2019). 10.1016/j.jcrysgro.2019.04.018 . hal-02401450.
  25. W. J. Choyke, H. Matsunami and G. Pensl, Silicon Carbide: Recent Major Advances (Vol. 1), (2004). Springer.
  26. H. Schulz and K. H. Thiemann, Solid State Communications, 23(11), 815-819 (1977). https://doi.org/10.1016/0038-1098(77)90959-0
  27. V. L. Shaposhnikov and O. Madelung, Properties of Group-IV, III-V and II-VI Semiconductors, (2004). Springer.
  28. T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications, (2014). John Wiley & Sons Singapore.
  29. M. S. Datta, A. K. Bandyopadhyay and B. Chaudhuri, Bull. Mater. Sci., Vol. 25, No. 3, pp. 181–189 (2002).