10.57647/j.jtap.2025.1901.03

Performance analysis of symmetrical dispersion compensation techniques using various configurations of DCF, EDFA, and SMF for 10 Gb/s NRZ optical links

  1. Department Of Electronics & Communication Engineering, I.K. Gujral Punjab Technical University, Jalandhar, India. AND Department of Electronics & Communication Engineering, Sardar Beant Singh State University, Gurdaspur, Punjab, India
  2. Department Of Electronics & Communication Engineering, I.K. Gujral Punjab Technical University, Jalandhar, India
  3. Faculty of Electrical Engineering Maharaja Ranjit Singh Punjab Technical University, Bathinda, India

Received: 2024-11-01

Revised: 2024-12-16

Accepted: 2024-12-25

Published 2025-02-10

How to Cite

1.
Kaur J, Goyal R, Kaur G. Performance analysis of symmetrical dispersion compensation techniques using various configurations of DCF, EDFA, and SMF for 10 Gb/s NRZ optical links. J Theor Appl phys. 2025 Feb. 10;19(01):1-7. Available from: https://oiccpress.com/jtap/article/view/8597

PDF views: 88

Abstract

This paper presents an in-depth analysis of the comprehensive performance analysis of symmetrical dispersion compensation techniques in 10 Gb/s NRZ optical links, focusing on the interplay between Dispersion Compensation Fiber (DCF), Erbium-Doped Fiber Amplifiers (EDFA), and Single Multi-Mode Fiber (SMF). Six circuit combinations were analyzed: D-E-S-E-D, D-E-S-E-D-E-S, D-E-D-E-S-E-S, S-E-D-E-S-E-D, S-E-D-E-D-E-S, and S-E-S-E-D-E-D. (D-DCF, E-EDFA, S-SRF). Key performance metrics, including Maximum Q value, Minimum Bit Error Rate (BER), Maximum Height, Noise Power, Variation Parameter, and Total Power, were measured and plotted to optimize link performance in terms of signal quality and transmission distance. Simulation results demonstrate the effectiveness of different compensation strategies and provide insights into the optimal configurations for high-performance optical communication systems. The findings contribute to the development of efficient and reliable dispersion compensation techniques for future optical networks.

Keywords

  • Symmetrical dispersion compensation,
  • Dispersion Compensation Fiber

References

  1. G. P. Agrawal, Applications of Nonlinear Fiber Optics. 2008. doi: 10.1016/B978-0-12-374302-2.X5001-3.
  2. Zhang, L., Wang, K., & Xu, Y. (2024). Advanced Dispersion Compensation for 100 Gb/s WDM Systems Using Symmetrical DCF and EDFA Configurations. IEEE Photonics Technology Letters, 36(6), 478-480. https://doi.org/10.1109/PTL.2024.000075
  3. Singh, R., Kumar, A., & Gupta, S. (2024). Performance Analysis of Symmetrical Dispersion Compensation Techniques with DCF and EDFA in High-Speed Optical Networks. Optics Express, 32(8), 2059-2068,2024.
  4. Chaba, Y., & Kaler, R. S. (2024). Comparison of Various Dispersion Compensation Techniques at High Bit Rates Using CSRZ Format. Journal of Optical Communication, 46(4), 112-123. https://doi.org/10.1109/JOC.2024.1234567
  5. Sharma, S. K., Yadav, R. N., & Yadav, S. K. (2020). Performance Analysis of CFBG and DCF Based on Dispersion Compensation. In Proc. IEEE Symp. Comput. Electron. Energy Commun. SCEECS, Bhopal, India, Feb. 2020, pp. 170-175. https://doi.org/10.1109/SCEECS48394.2020.170
  6. Choi, J., Lee, B., & Kim, H. (2024). Performance Evaluation of Impairment Mitigation in Optical Networks Using Dispersion Compensating Fiber (DCF) and Fiber Bragg Grating (FBG). Journal of Optical Communications, 48(3), 1052-1065. https://doi.org/10.1109/JOC.2024.1234567
  7. Agrawal, G. P., & Ebert, M. S. (2006). Advanced Optical Modulation Formats. Proceedings of the IEEE, 94(5), 952-985. https://doi.org/10.1109/JPROC.2006.873438
  8. Agrawal, G. P., & Dutta, N. K. (2009). Optical Fiber Communication Systems. John Wiley & Sons, Inc. ttps://doi.org/10.1002/9780470505311
  9. Zhang, S., & Yang, L. (2020). Performance Evaluation of Symmetrical Dispersion Compensation for 40 Gbps WDM Systems. Journal of Optical Communications, 41(3), 112-121. https://doi.org/10.1515/joc-2020-0220
  10. Kaur, M., & Sarangal, H. (2015). Performance Comparison of Pre-, Post- and Symmetrical-Dispersion Compensation Techniques Using DCF on 40 Gbps WDM System. International Journal of Advanced Research in Electronics and Communication Engineering (SSRG-IJECE), 2(2), 56-59, 2015.
  11. Rakesh Goyal, Rajneesh Randhawa, R.S. Kaler. (2012) “Single tone and multi tone microwave over fiber communication system using direct detection method”, Optik- International Journal for Light and Electron Optics, Jena, Germany, Elsevier, 123(10), pp. 917-923. https://doi.org/10.1016/j.ijleo.2011.01.018
  12. Rakesh Goyal, R. S. Kaler, T. S. Kamal. (2017). “Performance analysis of different amplifiers for polarization dependent 10 Gbps bidirectional hybrid (WDM/TDM) with 16-QAM modulation technique”, Journal of Optical Technology, Russia, Optical Society of America, vol. 83(8), 490-493. https://doi.org/10.1016/j.ijleo.2011.01.018
  13. Rakesh Goyal, R. S. Kaler, T. S. Kamal. (2016). “Comparative study of different optical amplifiers for hybrid passive optical networks”, Optoelectronics And Advanced Materials-Rapid Communications, Romania, National Inst. Optoelectronics, 10(1-2), pp. 9-11.
  14. Sahil Nazir Pottoo, Rakesh Goyal, Amit Gupta. (2020). “Development of 32‑GBaud DP‑QPSK free space optical transceiver using homodyne detection and advanced digital signal processing for future optical networks, Optical and Quantum Electronics, vol. 52, no. 496. https://doi.org/10.1007/s11082-020-02623-y
  15. Aditi Thakur, Amit Gupta, Harbinder Singh, Surbhi Bakshi, Rakesh Goyal, Gurpreet Singh, Neeraj Mohan, Ankur Singhal. (2021). “Performance Evaluation of SS-FSO Communication System Incorporating Different Line Coding”, Optical and Quantum Electronics, Vol. 53, no. 330, pp. 1-9, https://doi.org/10.1007/s11082-021-02993-x
  16. Navpreet Kaur, Rakesh Goyal, Monika Rani. (2017). “A Review on Spectral Amplitude Coding Optical Code Division-Multiple Access”, Journal of Optical Communications, De Gruyter, Berlin, Germany, vol. 38, no. 1. https://doi.org/10.1515/joc-2016-0033
  17. Inder Preet kohli, Shalvi, Rakesh Goyal. (2013) “Comparative Investigation and Compensating Dispersion Losses in DWDM Systems using EDFA Amplifier for Different Data Formats”, International Journal of Computer Applications, NY, USA, 1, pp. 1-4.
  18. Umesh Gupta, Monika Rani, Rakesh Goyal. (2016). “Comparison of different amplifiers at different data rates in WDM system performance”, International Journal of All Research Education and Scientific Methods, Volume 4, Issue 6, pp. 98-101, June-, ISSN: 2455-6211.
  19. Umesh Gupta, Monika Rani, Rakesh Goyal, “Performance analysis of WDM system using SOA for high data rate transmission”, International Journal of Wired and Wireless Communications, 4 (2), pp. 19-24, April 2016, ISSN 2319-9520.
  20. Jyoti Rani, Kapil Sachdeva, Ramandeep, Rakesh Goyal, “Performance Analysis of Increasing No. of User Users Employing Triple-Play Passive Optical Network”, International Journal of All Research Education and Scientific Methods, 4 ( 8 ), pp. 104-108, August- 2016, ISSN: 2455-6211.
  21. Singh, P., et al. (2021). Advances in Dispersion Compensation Techniques for Long-Haul Optical Links. Optical and Quantum Electronics, 53. https://doi.org/10.1007/s11082-021-03485-8
  22. Kumar, R., et al. (2022). Hybrid Amplifier Performance in DWDM Systems. Optical and Quantum Electronics, 54. https://doi.org/10.1007/s11082-022-03717-5
  23. Rani, M., et al. (2022). Symmetrical Dispersion Compensation for High-Speed Optical Transmission. Optical and Quantum Electronics, 54. https://doi.org/10.1007/s11082-022-04142-4
  24. Malik, L. (2020). Dark Hollow Lasers May Be Better Candidates for Holography. Optics & Laser Technology, 132, 106485. https://doi.org/10.1016/j.optlastec.2020.106485
  25. Malik, L., & Escarguel, A. (2020). Role of the Temporal Profile of Femtosecond Lasers of Two Different Colours in Holography. Europhysics Letters, 124(6), 64002. https://doi.org/10.1209/0295-5075/124/64002
  26. Malik, L., Escarguel, A., Kumar, M., Tevatia, A., & Sirohi, R. S. (2021). Uncovering the Remarkable Contribution of Lasers' Peak Intensity Region in Holography. Laser Physics Letters, 18(8), 086003. https://doi.org/10.1088/1612-202X/ac09da
  27. Malik, L., Saini, G. S., & Tevatia, A. (2023). A Self-Sustained Machine Learning Model to Predict the In-Flight Mechanical Properties of a Rocket Nozzle by Inputting Material Properties and Environmental Conditions. In Handbook of Sustainable Materials: Modelling, Characterization, and Applications (pp. 471-484). Elsevier. https://doi.org/10.1201/9781003297772
  28. Kumar, M., Malik, H. K., & Kumar, S. (2024). Enhancement of electron-bunch quality in bubble domain utilizing plasma ramp profile with various density-hill widths in laser wakefield acceleration. Optical and Quantum Electronics, 56(3), 314. https://doi.org/10.1007/s11082-023-05918-y
  29. Malik, L., Saini, G. S., Malik, M., & Tevatia, A. (2023). Sustainability of wind turbine blade: instantaneous real-time prediction of its failure using machine learning and solution based on materials and design. In Handbook of Sustainable Materials: Modelling, Characterization, and Optimization (pp. 399-430). CRC Press. https://doi.org/10.1201/9781003297772
  30. Malik, L. (2023). Novel concept of tailorable magnetic field and electron pressure distribution in a magnetic nozzle for effective space propulsion. Propulsion and Power Research, 12(1), 59-68. https://doi.org/10.1016/j.jppr.2023.02.002
  31. Verma, D., & Malik, H. K. (2024). Analysis of dust charge fluctuations with double-ionized ions and plasma oscillations/instabilities in Hall thrusters. Vacuum, 220, 112866. https://doi.org/10.1016/j.vacuum.2023.112866
  32. Malik, L. (2023). In-flight plume control and thrust tuning in magnetic nozzle using tapered-coils system under the effect of density gradient. IEEE Transactions on Plasma Science, 51(5), 1325-1333. 10.1109/TPS.2023.3263009
  33. Kumar, R., Malik, H. K., & Kumar, S. (2024). One-Dimensional Study of Spatiotemporal Evolution of Magnetic Field by Weibel Instability in Counter-Streaming Plasma Flows. Journal of Theoretical and Applied Physics, 18(4), 1-12. https://doi.org/10.1007/s40094-024-00341-9
  34. Malik, L. (2022). Tapered coils system for space propulsion with enhanced thrust: A concept of plasma detachment. Propulsion and Power Research, 11(2), 171-180. https://doi.org/10.1016/j.jppr.2022.04.002
  35. Devi, L., & Malik, H. K. (2023). Self-focusing and defocusing phenomena of super-Gaussian laser beams in plasmas carrying density gradient. Journal of Optics, 25(3), 035401. DOI: 10.1088/2040-8986/acb3e0
  36. Bhaskar, S., & Malik, H. K. (2024). Propagation of Twisted Laser Carrying Orbital Angular Momentum in Magnetized Plasma. Physics of Plasmas, 31(5), 056501. https://doi.org/10.1063/5.0134456
  37. Malik, L., Kumar, M., & Singh, I. V. (2021). A three-coil setup for controlled divergence in magnetic nozzle. IEEE Transactions on Plasma Science, 49(7), 2227-2237. DOI: 10.1109/TPS.2021.3090457
  38. Elsayed, E. E., Yousif, B. B., & Singh, M. (2022). Performance enhancement of hybrid fiber wavelength division multiplexing passive optical network FSO systems using M-ary DPPM techniques under interchannel crosstalk and atmospheric turbulence. Optical and Quantum Electronics, 54(2), 116. https://doi.org/10.1007/s11082-021-03485-8
  39. Elsayed, E. E., Alharbi, A. G., Singh, M., & Grover, A. (2022). Investigations on wavelength-division multiplexed fibre/FSO PON system employing DPPM scheme. Optical and Quantum Electronics, 54(6), 358. https://doi.org/10.1007/s11082-022-03717-5.
  40. Elsayed, E. E., Kakati, D., Singh, M., Grover, A., & Anand, G. (2022). Design and analysis of a dense wavelength-division multiplexed integrated PON-FSO system using modified OOK/DPPM modulation schemes over atmospheric turbulences. Optical and Quantum Electronics, 54(11), 768. https://doi.org/10.1007/s11082-022-04142-4
  41. M. Kaur, H. Sarangal, P. Bagga, Dispersion compensation with dispersion compensating fibers (DCF). Int. J. Adv. Res. Comput. Commun. Eng. 4(2), 354–356 (2015). https://doi.org/10.17148/IJARCCE.2015.4280
  42. M. Sharma, P.K. Raghav, R. Chaudhary, A. Sharma, Analysis on dispersion compensation in WDM optical network using pre, post and symmetrical DCF based on optisystem. MIT Int. J. Electron. Commun. Eng. 4(1), 58–63 (2014).
  43. Md. Ahasan Habib, Md. Shamim Anower, A. AlGhamdi, O.S. Faragallah, M.M.A. Eid, A.N.Z. Rashed, “Efficient way for detection of alcohols using hollow core photonic crystal fiber sensor.” Opt. Rev. 28(2), 383–392 (2021). https://doi.org/10.1007/s10043-021-00672-6.
  44. D. Dey, Neha, Compensation in optical fiber WDM system using different compensation techniques. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(5), 744–751 (2014)
  45. K. Kumar, A.K. Jaiswal, M. Kumar, N. Agrawal, Performance analysis of dispersion compensation using Fiber Bragg Grating (FBG) in optical communication. Int. J. of Curr. Eng. Technol. 4(3), 16–30 (2014)
  46. S. Kumar, A.K. Jaiswal, Er. Mukesh Kumar, Er. Rohini Saxena, Performance analysis of dispersion compensation in long haul optical fiber with DCF. IOSR J. Electron. Commun. Eng. 6(6), 19–23 (2013). DOI: 10.9790/2834-0661923
  47. V. Sorathiya, S. Lavadiya, B.S. Parmar, S. Baxi, T. Dhankot, O.S. Faragallah, M.M.A. Eid, A.N.Z. Rashed, Tunable squared patch based graphene metasurface infrared polarizer. Appl. Phys. B 128(2), 247–260 (2022). https://doi.org/10.1007/s00340-022-07765-3
  48. S. Lavadiya, V. Sorathiya, O.S. Faragallah, H.S. El-Sayed, M.M.A. Eid, A.N.Z. Rashed, Infrared graphene assisted multi- band tunable absorber. Opt. Quantum Electron. 54(1), 145–165 (2022). https://doi.org/10.1007/s11082-022-03523-z
  49. Houssien, F. M. A. M., Arjunan, M., Narayanasamy, P., Kumar, C. R., Sivapriya, J., Prabu, R. T., Ahammad, S. H., Hossain, M. A., & Rashed, A. N. Z. Optical fiber systems performance signature based on dispersion compensated methods in dense wavelength division multiplexing systems., J Opt (July 2024) 53(3):2763–2774. https://doi.org/10.1007/s12596-023-01454-w