10.57647/j.jtap.2025.1901.01

Temperature effects on the conversion coupling efficiency in dye-based plasmonic random laser gain media

  1. Department of Laser Physics, College of Science for Women, University of Babylon, Hillah, Iraq  AND  Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
  2. Department of Laser Physics, College of Science for Women, University of Babylon, Hillah, Iraq
  3. Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran

Received: 2024-10-24

Revised: 2024-11-29

Accepted: 2024-12-04

Published 2025-02-10

How to Cite

1.
Jawad MK, Jassim JM, Haddawi SF, Hamidi SM. Temperature effects on the conversion coupling efficiency in dye-based plasmonic random laser gain media. J Theor Appl phys. 2025 Feb. 10;19(01):1-6. Available from: https://oiccpress.com/jtap/article/view/8594

PDF views: 106

Abstract

The impact of temperature on the conversion coupling efficiency between Rhodamine 6G (Rh6G) dye and hybrid nanoparticles, composed of gold (Au) and copper (Cu), and its influence on the performance of random lasers is investigated. The study focused on the interaction between the photophysical properties of Rh6G dye molecules and the plasmonic and thermal effects of Au/Cu nanoparticles (NPs) at varying temperatures. We analyzed the interaction between the dye molecules and nanoparticles as a function of pumping energy and temperature focusing on laser parameters laser threshold, full width at half maximum (FWHM), and peak intensity. Our results show that increasing pumping energy and temperature significantly affects the FWHM's narrowing, and peak intensity enhancement. We found that with increasing pumping energy, the FWHM narrowed to about 8 nm for Au and Cu nanoparticles, and the peak intensity was enhanced to about 40,000 a.u. for AuNPs and 28,000 a.u. for CuNPs. While, we found that with increasing temperature, the FWHM decreased to about 0.6 nm for AuNPs and 0.8 nm for CuNPs, and the peak intensity increased to about 5400 a.u. for AuNPs and 9400 a.u. for CuNPs. This study provides insight into optimizing random laser performance through temperature control, potentially advancing the development of tunable photonic devices.

Keywords

  • Random laser,
  • Rhodamine 6G,
  • Copper nanoparticles,
  • Gold nanoparticles,
  • Temperature,
  • Coupling efficiency,
  • Magneto- plasmonic

References

  1. R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov and V.S. Letokhov, "A laser with a nonresonant feedback," IEEE J. Quantum Electronics QE-2, 442–446 (1966). Doi: 10.1038/NPHYS1509
  2. Naik, P., Nazar, A. A. A., & Laskar, J. M. (2022). Plasmonic Random Lasers. In Recent Advances in Plasmonic Probes: Theory and Practice (pp. 467-493). Cham: Springer International Publishing. Doi: 10.1007/978-3-030-99491-4_19
  3. N. M. Lawandy, R. M. Balachandran, S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994). Doi: org/10.1038/368436a0
  4. Haddawi, M. F., Jassim, J. M., & Hamidi, S. M. (2024). Plasmonic multi-wavelength random laser by gold nanoparticles doped into glass substrate. Journal of Optics, 53(2), 876-882. Doi: 10.1007/s12596-023-01315-6
  5. Yeshchenko, O. A., Kutsevol, N. V., & Naumenko, A. P. (2016). Light-induced heating of gold nanoparticles in colloidal solution: dependence on detuning from surface plasmon resonance. Plasmonics, 11, 345-350. Doi: 10.1007/s11468-015-0034-z
  6. Beiranvand, Z. B. Thermal Percolation Threshold and Synergistic Effects in Graphene Enhanced Thermal Interface Materials. University of California, Riverside. MsC thesis, (2021).
  7. Mayer, K. M., & Hafner, J. H. (2011). Localized surface plasmon resonance sensors. Chemical reviews, 111(6), 3828-3857. Doi: 10.1021/cr100313v
  8. Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical reviews, 108(2), 462-493. Doi: 10.1021/cr068107d
  9. Z. Chen, J. Li, T. Li, T. Fan, Ch. Meng, Ch. Li, J. Kang, L. Chai, Y. Hao, Y. Tang, O. A. Al-Hartomy, S. Wageh, A. G. Al-Sehemi, Z. Luo, J. Yu, Y. Shao, D. Li, Sh. Feng, W. J. Liu, Y. He, X. Ma, Z. Xie, and H. Zhang, "A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2", National Science Review 9: nwac104, (2022). Doi: 10.1093/nsr/nwac104.
  10. Z. Chen, Ch. Meng, X. Wang, J. Chen, J. Deng, T. Fan, L. Wang, H. Lin, H. Huang, Sh. Li, Sh. Sun, J. Qu, D. Fan, X. Zhang, Y. Liu, Y. Shao, H. Zhang, "Ultrasensitive DNA Origami Plasmon Sensor for Accurate Detection in Circulating Tumor DNAs", Laser & Photonics reviews, 18 (10), 2400035, (2024). Doi: 10.1002/lpor.202400035.
  11. Fei Zheng, Zhi Chen, Jingfeng Li, Rui Wu, Bin Zhang, Guohui Nie, Zhongjian Xie, and Han Zhang, "Highly Sensitive CRISPR-Empowered Surface PlasmonResonance Sensor for Diagnosis of Inherited Diseases with Femtomolar-Level Real-Time Quantification", Adv. Sci. 9, 2105231, (2022). Doi: 10.1002/advs.202105231.
  12. AR Sadrolhosseini, SM Hamidi, Y Mazhdi, "Detection of gentamicin in water and milk using chitosan-ZnS-Au nanocomposite based on surface plasmon resonance imaging sensor", Measurement: Journal of the International Measurement Confederation 239, 115412, (2024). Doi: 10.1016/j.measurement. 2024.115412.
  13. S. F. Haddawi, H. Hummud, S. M. Hamidi,"Signature of plasmonic nanoparticles in multi-wavelength low power random lasing", Optics and Laser technology, 121, pp.105770-105784, (2020). Doi: 10.1016/j.optlastec.2019.105770.
  14. Cui, X., Ruan, Q., Zhuo, X., Xia, X., Hu, J., Fu, R., ... & Xu, H. (2023). Photothermal nanomaterials: a powerful light-to-heat converter. Chemical Reviews, 123(11), 6891-6952. Doi: 10.1021/acs.chemrev.3c00159
  15. Haghighat Bayan, M. A., Dias, Y. J., Rinoldi, C., Nakielski, P., Rybak, D., Truong, Y. B., ... & Pierini, F. (2023). Near‐infrared light activated core‐shell electrospun nanofibers decorated with photoactive plasmonic nanoparticles for on‐demand smart drug delivery applications. Journal of Polymer Science, 61(7), 521-533. Doi: org/10.1002/pol.20220747
  16. Kausar, A., Ahmad, I., Aldaghri, O., Ibnaouf, K. H., & Eisa, M. H. (2023). Shape Memory Graphene Nanocomposites—Fundamentals, Properties, and Significance. Processes, 11(4), 1171. Doi: org/10.3390/pr11041171
  17. Chao, Y. C., Shih, C. T., Lin, J. Y., Wu, J. W., Ho, C. C., Lai, M. C., ... & Chen, Y. F. Enhancement of Light–Matter Interaction Induced by Quantum‐Coherent Coupling Between Localized Surface Plasmon Resonance and Volume Plasmon Polariton. Advanced Optical Materials, 2400973. Doi:10.1002/adom.202400973
  18. Ejbarah, R. A., J. M. Jassim, S. F. Haddawi, and S. M. Hamidi. "Transition from incoherent to coherent random lasing by adjusting silver nanowires." Applied Physics A 127, no. 6 (2021). Doi: 10.1007/s00339-021-04634-2.
  19. Kamil, N. A. I. M., Ismail, W. Z. W., Ismail, I., Balakrishnan, S. R., Sahrim, M. A., Jamaludin, J & Suhaimi, S. (2020, January). Principles and characteristics of random lasers and their applications in medical, bioimaging and biosensing. In AIP Conference Proceedings (Vol. 2203, No. 1). AIP Publishing. Doi: 10.1063/1.5142109
  20. Akouibaa, A., Masrour, R., Akouibaa, A., Mordane, S., Benhamou, M., & Heryanto, H. (2024). Optical and thermoplasmonic properties of core (AuxAg1-x)-shell (Au) nanostructures. Nano-Structures & Nano-Objects, 40, 101333. Doi: 10.1016/j.nanoso.2024.101333
  21. Haddawi, S.F., A.K. Kodeary, N.S. Shnan, Hammad R. Humud, and S.M. Hamidi. "Light emitting polymers in two dimensional plasmonic multi wavelength random laser." Optik 231 (2021), 166437. Doi: org/10.1016/j.ijleo.2021.166437
  22. Amin, M. H., Hasan, J. A., Rashid, F. H., & Omar, M. H. (2024). A comprehensive investigation of structural, optical, morphological, and electrical properties of CuO-NPs synthesized by pulsed laser ablation in water: Effect of laser fluence. Journal of Materials Science: Materials in Electronics, 35(3), 210. Doi: 10.1007/s10854-024-11954-5
  23. Ismail, W. Z. W., Vo, T. P., Goldys, E. M., & Dawes, J. M. (2015). Plasmonic enhancement of Rhodamine dye random lasers. Laser Physics, 25(8), 085001. Doi:10.1088/1054-660X/25/8/085001
  24. Guglielmelli, A., Pierini, F., Tabiryan, N., Umeton, C., Bunning, T. J., & De Sio, L. (2021). Thermoplasmonics with gold nanoparticles: A new weapon in modern optics and biomedicine. Advanced Photonics Research, 2(8), 2000198.‏ Doi: org/10.1002/adpr.202000198
  25. Kareem, F. F., Saeed, A. A., Hadi, M. F., & Kadhum, F. J. (2021). Absorption Characteristics of Magnesium Oxide and Aluminium Oxide NPs/Rhodamine 6G/Polyvinyl Alcohol Films. Journal of Kufa-Physics, 13(02), 51-57. Doi: https://doi.org/10.31257/2018/JKP/2021/130207
  26. Lee, K., & Lawandy, N. M. (2002). Laser action in temperature-controlled scattering media. Optics communications, 203(3-6), 169-174. Doi: 10.1016/S0030-4018(02)01099-4
  27. Dulkeith, E., Morteani, A. C., Niedereichholz, T., Klar, T. A., Feldmann, J., Levi, S. A., & Gittins, D. I. (2002). Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects. Physical review letters, 89(20), 203002. Doi: https://doi.org/10.1103/PhysRevLett.89.203002
  28. Dulkeith, E., Ringler, M., Klar, T. A., Feldmann, J., Munoz Javier, A., & Parak, W. J. (2005). Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano letters, 5(4), 585-589. Doi: 10.1021/nl0480969
  29. Yadav, A., Zhong, L., Sun, J., Jiang, L., Cheng, G. J., & Chi, L. (2017). Tunable random lasing behavior in plasmonic nanostructures. Nano Convergence, 4, 1-8. Doi: 10.1186/s40580-016-0095-5
  30. Sarkhosh, L., & Mansour, N. (2015). Study of the solution thermal conductivity effect on nonlinear refraction of colloidal gold nanoparticles. Laser Physics, 25(6), 065404. Doi 10.1088/1054-660X/25/6/065404