10.57647/j.jtap.2024.1806.80

Comprehensive optical study of CdS and Fe/CdS nanoparticles synthesized by laser ablation

  1. University of Babylon, College of Science for Women, Department of Laser Physics, Babylon, Iraq
Comprehensive optical study of CdS and Fe/CdS nanoparticles synthesized by laser ablation

Received: 2024-11-04

Revised: 2024-11-13

Accepted: 2024-11-17

Published 2024-12-30

How to Cite

1.
Ahmed AS, Sharba AB, Salman QM. Comprehensive optical study of CdS and Fe/CdS nanoparticles synthesized by laser ablation. J Theor Appl phys. 2024 Dec. 30;18(6):1-11. Available from: https://oiccpress.com/jtap/article/view/8336

PDF views: 35

Abstract

This work presents a detailed study of the characteristics of CdS and Fe/CdS nanoparticles synthesized by pulsed laser ablation in liquid at different conditions (environment, fluence, concentration). The study shows and discusses the crucial conditions and parameters that influence the production of the CdS and Fe/CdS nanoparticles. The results showed that the size and size distribution of CdS nanoparticles in methanol depends significantly on the particle concentration, laser fluence, and the liquid type. In addition, the presence of Fe nanoparticles in methanol limits the production of CdS to ultra-small particles even at high concentrations without affecting the structure of the energy states of the CdS nanoparticles. CdS nanoparticles generated in water suffer from the effects of water molecules, especially at low concentrations. This effect does not involve a permanent change in the composition of the particles. Adding surfactants to water reduces or eliminates these effects and significantly increases the ablation efficiency. The presence of CdS, Fe, and Fe/CdS in methanol does not noticeably affect the refractive index, chromatic dispersion, and thermal properties of the liquid. The results of this study can guide the process of controlling the properties of pure and hybrid CdS nanoparticles for optoelectronic and photonic applications.

Keywords

  • CdS nanoparticles,
  • Fe/CdS nanoparticles,
  • Pulse laser ablation,
  • Optical properties

References

  1. Junaid, M., M. Imran, M. Ikram, M. Naz, M. Aqeel, H. Afzal, H. Majeed, and S. Ali., "The study of Fe-doped CdS nanoparticle-assisted photocatalytic degradation of organic dye in wastewater", Applied Nanoscience, 9 (2019) 1593-1602. DOI: https://doi.org/10.1007/s13204-018-0933-3.
  2. Cheng, Tingting, Huajing Gao, Guorong Liu, Zhongsheng Pu, Shifa Wang, Zao Yi, Xianwen Wu, and Hua Yang., "Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr (VI) ions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633 (2022) 127918. DOI: https://doi.org/10.1016/j.colsurfa.2021.127918.
  3. Jamal, Farzana, Aqsa Rafique, Sawaira Moeen, Junaid Haider, Walid Nabgan, Ali Haider, Muhammad Imran, Ghazanfar Nazir, Mansur Alhassan, Muhammad Ikram, Qasim Khan, Ghafar Ali, Maaz Khan, Waqas Ahmad, and Muhammad Maqbool, "Review of metal sulfide nanostructures and their applications", ACS Applied Nano Materials, 6 (9) (2023) 7077-7106. DOI: https://doi.org/10.1021/acsanm.3c00417.
  4. Mansour, A. M., R. S. Ibrahim, and AAy Azab, "Structure, morphology, optical and magnetic studies of Fe3O4-doped CdS nanocomposite", Journal of Materials Science: Materials in Electronics, 33 (13) (2022) 10251-10258. DOI: https://doi.org/10.1007/s10854-022-08013-2.
  5. Rafiq, A., M. Imran, M. Aqeel, M. Naz, M. Ikram, and S. Ali, "Study of transition metal ion doped CdS nanoparticles for removal of dye from textile wastewater", Journal of Inorganic and Organometallic Polymers and Materials, 30 (2020) 1915-1923. DOI: https://doi.org/10.1007/s10904-019-01343-5.
  6. Kadem, Zainab A., Ahmed B. Sharba, and Jassim M. Jassim, "Fine Control of Refractive Index in Large-Size Magnetic Fluids for Photonics Applications", Iraqi Journal of Applied Physics, 19 (4B) (2023) 127-132.
  7. Kadem, Zainab A., Ahmed B. Sharba, and Jassim M. Jassim, "Fast-attenuation Magnetic Fluid-based Filters with Stable and Variable Spectra", Iraqi Journal of Applied Physics, 19 (4C) (2023) 257-262.
  8. Ullah, Haseeb, Zahid Haneef, Abrar Ahmad, Ian S. Butler, Rebwar Nasir Dara, and Ziaur Rehman, "MoS2 and CdS photocatalysts for water decontamination: A review", Inorganic Chemistry Communications, 153 (2023) 110775. DOI: https://doi.org/10.1016/j.inoche.2023.110775.
  9. Kumar, Suresh, and J. K. Sharma, "Stable phase CdS nanoparticles for optoelectronics: a study on surface morphology, structural and optical characterization", Materials Science-Poland, 34 (2) (2016) 368-373.‏ DOI: https://doi.org/10.1515/msp-2016-003.
  10. Li, Xiaoyan, Yi Xi, Chenguo Hu, and Xue Wang, "Water induced size and structure phase transition of CdS crystals and their photocatalytic property", Materials Research Bulletin, 48 (2) (2013) 295-299. DOI: https://doi.org/10.1016/j.materresbull.2012.10.022.
  11. Yang, Kai, Xiaoxiao Li, Changlin Yu, Debin Zeng, Fanyun Chen, Kailian Zhang, Weiya Huang, and Hongbing Ji, "Review on heterophase/homophase junctions for efficient photocatalysis: The case of phase transition construction", Chinese Journal of Catalysis, 40 (6) (2019) 796-818. DOI: https://doi.org/10.1016/S1872-2067(19)63290-0.
  12. Sreejith, K. R., L. Gorgannezhad, J. Jin, C. H. Ooi, T. Takei, G. Hayase, H. Stratton, Krystina Lamb, Muhammad Shiddiky, Dzung Viet Dao, Nam-Trung Nguyen, "Core-shell beads made by composite liquid marble technology as a versatile microreactor for polymerase chain reaction”, Micromachines, 11 (3) (2020) 242. DOI: https://doi.org/10.3390/mi11030242.
  13. Lekshmi, Bindhu Sunilkumar, Ajeet Singh Yadav, Panneerselvam Ranganathan, and Subramanyan Namboodiri Varanakkottu, "Simple and continuous fabrication of Janus liquid marbles with tunable particle coverage based on controlled droplet impact", Langmuir, 36 (50) (2020) 15396-15402. DOI: https://doi.org/10.1021/acs.langmuir.0c02988.
  14. Zhang, Nan, Xuefei Li, Yue Wang, Bolin Zhu, and Jinghai Yang, "Fabrication of magnetically recoverable Fe3O4/CdS/g-C3N4 photocatalysts for effective degradation of ciprofloxacin under visible light", Ceramics International, 46 (13) (2020) 20974-20984. DOI: https://doi.org/10.1016/j.ceramint.2020.05.158.
  15. Reddy, Ankireddy Seshadri, and Jongsung Kim, "An efficient g-C3N4-decorated CdS-nanoparticle-doped Fe3O4 hybrid catalyst for an enhanced H2 evolution through photoelectrochemical water splitting", Applied Surface Science, 513 (2020) 145836. DOI: https://doi.org/10.1016/j.apsusc.2020.145836.
  16. Rao, G. Thirumala, and R. V. S. S. N. Ravikumar, "Novel Fe-doped ZnO-CdS nanocomposite with enhanced visible light-driven photocatalytic performance", Materials Research Innovations, 25 (4) (2021) 215-220. DOI: https://doi.org/10.1080/14328917.2020.1774726.
  17. Heiba, Zein K., Mohamed Bakr Mohamed, and Ali Badawi, "Structure, optical and electronic characteristics of iron-doped cadmium sulfide under nonambient atmosphere", Applied Physics A, 127 (2021) 1-11. DOI: https://doi.org/10.1007/s00339-021-04293-3.
  18. Samadi‐Maybodi, Abdolraouf, Mohammad Reza Shariati, and Abasalt Hosseinzadeh Colagar, "Magnetically Separable Fe3O4@ CdS Type‐II nanohybrids with excellent photocatalytic activity and antibacterial properties", ChemPlusChem, 83 (8) (2018) 769-779. DOI: https://doi.org/10.1002/cplu.201800315.
  19. Deng, Chonghai, and Xiaobo Tian, "Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting", Materials Research Bulletin, 48 (10) (2013) 4344-4350. DOI: https://doi.org/10.1016/j.materresbull.2013.07.019.
  20. Balachandran, Anugop, Sithara P. Sreenilayam, Kailasnath Madanan, Sabu Thomas, and Dermot Brabazon, "Nanoparticle production via laser ablation synthesis in solution method and printed electronic application-A brief review", Results in Engineering, 16 (2022) 100646. DOI: https://doi.org/10.1016/j.rineng.2022.100646.
  21. Abd, Ahmed N., Raid A. Ismail, and Nadir F. Habubi, "Characterization of CdS nanoparticles prepared by laser ablation in methanol", Journal of Materials Science: Materials in Electronics, 26 (2015) 9853-9858. DOI: https://doi.org/10.1007/s10854-015-3660-5.
  22. Alkallas, Fatemah H., Shoug M. Alghamdi, Ameenah N. Al-Ahmadi, Amira Ben Gouider Trabelsi, Eman A. Mwafy, W. B. Elsharkawy, Emaan Alsubhe, Ayman M. Mostafa, and Reham A. Rezk, "Photodetection properties of CdS/Si heterojunction prepared by pulsed laser ablation in DMSO solution for optoelectronic application", Micromachines, 14 (8) (2023) 1546. DOI: https://doi.org/10.3390/mi14081546.
  23. Kuriakose, Alina C., V. P. N. Nampoori, and Sheenu Thomas, "Facile synthesis of Au/CdS core-shell nanocomposites using laser ablation technique", Materials Science in Semiconductor Processing, 101 (2019) 124-130. DOI: https://doi.org/10.1016/j.mssp.2019.05.030.
  24. Kuriakose, Alina C., V. P. N. Nampoori, and Sheenu Thomas, "Influence of laser ablated Ag core on the thermo-optic and photocatalytic characteristics of CdS nanocolloids", Materials Chemistry and Physics, 258 (2021) 123911. DOI: https://doi.org/10.1016/j.matchemphys.2020.123911.
  25. Kuriakose, Alina C., U. Sony, V. P. N. Nampoori, and Sheenu Thomas, "Modulation of nonlinear optical properties in CdS based core shell nanocolloids fostered by metal nanoparticles", Optics & Laser Technology, 134 (2021) 106626. DOI: https://doi.org/10.1016/j.optlastec.2020.106626.
  26. Mahdieh, Mohammad Hossein, and Behzad Fattahi, "Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence", Applied Surface Science, 329 (2015) 47-57. DOI: https://doi.org/10.1016/j.apsusc.2014.12.069.
  27. Zanatta, Antonio Ricardo, "Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination", Scientific reports, 9 (1) (2019) 11225.‏ DOI: https://doi.org/10.1038/s41598-019-47670-y.
  28. Wageh, S., and Mai Maize, "Structure and optical properties of capped and uncapped CdS nanoparticles prepared in aqueous medium", Journal of Materials Science: Materials in Electronics, 25 (2014) 4830-4840. DOI: https://doi.org/10.1007/s10854-014-2240-4.
  29. Baral, S., A. Fojtik, H. Weller, and A. Henglein, "Photochemistry and radiation chemistry of colloidal semiconductors. 12. Intermediates of the oxidation of extremely small particles of cadmium sulfide, zinc sulfide, and tricadmium diphosphide and size quantization effects (a pulse radiolysis study)", Journal of the American Chemical Society, 108 (3) (1986) 375-378. DOI: https://doi.org/10.1021/ja00263a005.
  30. Ghoranneviss, Peyman, Davoud Dorranian, and Amir Hossein Sari, "Effects of laser fluence on the Cd (OH) 2/CdO nanostructures produced by pulsed laser ablation method.", Optical and Quantum Electronics, 51 (3) (2019) 88. DOI: https://doi.org/10.1007/s11082-019-1809-9.
  31. Darwish, Ayman M., Wael H. Eisa, Ali A. Shabaka, and Mohamed H. Talaat, "Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment.", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153 (2016) 315-320. DOI: https://doi.org/10.1016/j.saa.2015.08.007.
  32. Altowyan, Abeer S., Ayman M. Mostafa, and Hoda A. Ahmed, "Effect of liquid media and laser energy on the preparation of Ag nanoparticles and their nanocomposites with Au nanoparticles via laser ablation for optoelectronic applications", Optik 241 (2021) 167217. DOI: https://doi.org/10.1016/j.ijleo.2021.167217.
  33. Mahdieh, Mohammad Hossein, and Behzad Fattahi, "Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence", Applied Surface Science, 329 (2015) 47-57. DOI: https://doi.org/10.1016/j.apsusc.2014.12.069.
  34. Attallah, Ali H., Farah Shamil Abdulwahid, Yasir A. Ali, and Adawiya J. Haider, "Effect of liquid and laser parameters on fabrication of nanoparticles via pulsed laser ablation in liquid with their applications: a review", Plasmonics, 18 (4) (2023) 1307-1323. DOI: https://doi.org/10.1007/s11468-023-01852-7.
  35. Singh, Subhash Chandra, Haibo Zeng, Chunlei Guo, and Weiping Cai. "Lasers: fundamentals, types, and operations," Nanomaterials: Processing and Characterization With Lasers, First Edition, Wiley-VCH Verlag GmbH & Co. KGaA (2012). DOI: 10.1002/9783527646821.
  36. Li, Jinchao, Wei Zhang, Hongyu Zheng, Jun Gao, and Chao Jiang, "Reducing plasma shielding effect for improved nanosecond laser drilling of copper with applied direct current", Optics & Laser Technology, 163 (2023) 109372. DOI: https://doi.org/10.1016/j.optlastec.2023.109372.
  37. Stafe, Mihai, Aurelian Marcu, and Niculae N. Puscas, "Pulsed laser ablation of solids", Springer, Berlin 10 (2014) 978-3. DOI: https://doi.org/10.1007/978-3-642-40978-3.
  38. Volkov, Alexey N., and Michael A. Stokes, "Effects of nanoparticles on plasma shielding at pulsed laser ablation of metal targets", In High-Power Laser Ablation VIII, 12939 (2024) 13-24. DOI: https://doi.org/10.1117/12.3012969.
  39. Sankhla, Aryan, Rajeshwar Sharma, Raghvendra Singh Yadav, Diwakar Kashyap, S. L. Kothari, and S. Kachhwaha, "Biosynthesis and characterization of cadmium sulfide nanoparticles–an emphasis of zeta potential behavior due to capping", Materials Chemistry and Physics, 170 (2016) 44-51. DOI: https://doi.org/10.1016/j.matchemphys.2015.12.017.
  40. Wu, Kaifeng, Haiming Zhu, Zheng Liu, William Rodríguez-Córdoba, and Tianquan Lian, "Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod heterostructures", Journal of the American Chemical Society, 134 (25) (2012) 10337-10340. DOI: https://doi.org/10.1021/ja303306u.
  41. Yordanov, Georgi G., Eiki Adachi, and Ceco D. Dushkin, "Growth kinetics and characterization of fluorescent CdS nanocrystals synthesized with different sulfur precursors in paraffin hot-matrix", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 289 (1-3) (2006) 118-125. DOI: https://doi.org/10.1016/j.colsurfa.2006.04.019.
  42. Semenova, E. M., S. A. Vorobyova, and A. I. Lesnikovich, "Interphase synthesis of Fe3O4/CdS core–shell nanoparticles", Optical Materials, 34 (1) (2011) 99-102. DOI: https://doi.org/10.1016/j.optmat.2011.07.008.
  43. Majeed, Hassan A., and Ahmed B. Sharba, "Environment-induced effects on the nonlinear refractive index of methyl orange at different spectral regions", In Journal of Physics: Conference Series, 1818 (1) (2021) 012131. DOI: https://iopscience.iop.org/article/10.1088/1742-6596/1818/1/012131.
  44. Sharba, Ahmed B., Rafea T. Ahmed, and S. F. Haddawi, "A comprehensive linear and nonlinear study on a fluorescent stain", Journal of Nonlinear Optical Physics & Materials, 31 (4) (2022): 2250020. DOI: https://doi.org/10.1142/S0218863522500205.