10.57647/j.jtap.2024.1806.72

Laser-magnetized plasma interaction: inverse bremsstrahlung absorption with non-Maxwellian electrons

  1. Department of Physics Education, Farhangian University, Tehran, Iran
  2. Department of Physics, Yazd University, Yazd, Iran
  3. Laboratory of Physics of Radiations and Their Interaction with Matter (PRIMALAB), Department of Physics, Faculty of Matter Sciences, University of Batna 1, Batna, Algeria
Laser-magnetized plasma interaction: inverse bremsstrahlung absorption with non-Maxwellian electrons

Received: 2024-08-01

Revised: 2024-09-08

Accepted: 2024-10-12

Published 2024-12-30

How to Cite

1.
Firouzi-Farrashbandi N, Eslami-Kalantari M, Sid A. Laser-magnetized plasma interaction: inverse bremsstrahlung absorption with non-Maxwellian electrons. J Theor Appl phys. 2024 Dec. 30;18(6):1-6. Available from: https://oiccpress.com/jtap/article/view/8328

PDF views: 46

Abstract

In this paper, q-parameterized nonextensive distribution is used to investigate various faces of the laser-magnetized plasma interactions including Inverse Bremsstrahlung Absorption (IBA). IBA process serves as an important way of delivering laser energy to plasma in laser fusion interactions. To do this, the Fokker-Planck equation and the q-nonextensive distribution function are used while a magnetic field is taken into account. As the maximum electron velocity in the limit of  goes to infinity, the q-nonextensive distribution function reduces to the standard Maxwelle-Boltzmann distribution. In this case, Laser and plasma parameters such as electron temperature, laser wavelength and nonextensivity degree are studied on IBA in magnetized plasma. Considering the existence of a static magnetic field, it is indicated that the IBA increases in the critical layer with a decrease in the laser wavelength and the strength of non-extensivity (q). But IBA varies slowly with the static magnetic field. Some instability can occur through the inverse bremsstrahlung absorption.

Keywords

  • Fusion,
  • Magneto-inertial,
  • Plasma,
  • Inverse bremsstrahlung,
  • q-nonextensive,
  • Fokker-Planck

References

  1. Kirkpatrick RC, Lindemuth IR, Ward MS. Magnetized target fusion: An overview. Fusion Technology. DOI: 10.13182/FST95-A30382, 1995;27(3):201-14.
  2. McKenty P, Goncharov V, Town R, Skupsky S, Betti R, McCrory R. Analysis of a direct-drive ignition capsule designed for the National Ignition Facility. Physics of Plasmas. DOI: 10.1063/1.1350571, 2001;8(5):2315-22.
  3. Wurden GA, Hsu SC, Intrator TP, Grabowski T, Degnan J, Domonkos M, et al. Magneto-inertial fusion. Journal of Fusion Energy,DOI: 10.1007/s10894-015-0038-x, 2016;35(1):69-77.
  4. Ryzhkov S. Current state, problems, and prospects of thermonuclear facilities based on the magneto-inertial confinement of hot plasma. Bulletin of the Russian Academy of Sciences: Physics, DOI: 10.3103/S1062873814050281, 2014;78(5):456-61.
  5. Gotchev OV, Jang NW, Knauer JP, Barbero MD, Betti R, Li CK, et al. Magneto-inertial Approach to Direct-drive Laser Fusion. Journal of Fusion Energy, DOI: 10.1007/s10894-007-9112-3, 2007;27(1-2):25-31.
  6. Gomez MR, Slutz SA, Sefkow AB, Sinars DB, Hahn KD, Hansen SB, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion. Physical review letters, DOI: 10.1103/PhysRevLett.113.155003, 2014;113(15):155003.
  7. Shahmansouri M, Alinejad H. Arbitrary amplitude electron acoustic waves in a magnetized nonextensive plasma. Astrophysics and Space Science, DOI: 10.1007/s10509-013-1533-z, 2013;347:305-13.
  8. Alinejad H. Effect of dust polarity on transcritical bifurcation of dust ion-acoustic waves in a nonextensive dusty plasma. Chaos, Solitons & Fractals, DOI: 10.1016/j.chaos.2022.111907, 2022;157:111907.
  9. Shahmansouri M, Tribeche M. Nonextensive dust acoustic shock structures in complex plasmas. Astrophysics and Space Science, DOI: 10.1007/s10509-013-1430-5, 2013;346:165-70.
  10. Glenzer S, Rozmus W, Bychenkov VY, Moody J, Albritton J, Berger R, et al. Anomalous absorption of high-energy green laser light in high-Z plasmas, DOI: 10.1103/PhysRevLett.88.235002, Physical review letters, DOI: 2002;88(23):235002.
  11. Tzeng K, Mori WB, Decker C. Anomalous absorption and scattering of short-pulse high-intensity lasers in underdense plasmas. Physical review letters, DOI: 10.1103/PhysRevLett.76.3332, 1996;76(18):3332.
  12. Pfalzner S. An Introduction to Inertial Confinement Fusion: Taylor & Francis/CRC Press; 2006.
  13. Eliezer S. The interaction of high-power lasers with plasmas, IOP Publishing Ltd 2002; 2003.
  14. Cauble R, Rozmus W. The inverse bremsstrahlung absorption coefficient in collisional plasmas. Physics of Fluids, DOI: 10.1063/1.865338, 1985;28(11):3387.
  15. Kato S, Kawakami R, Mima K. Nonlinear inverse bremsstrahlung in solid-density plasmas. Physical Review A, DOI: 10.1103/PhysRevA.43.5560, 1991;43(10):5560.
  16. Porshnev P, Khanevich E, Bivona S, Ferrante G. Nonlinear inverse bremsstrahlung and highly anisotropic electron distributions. Physical Review E, DOI: 10.1103/PhysRevE.53.1100, 1996;53(1):1100.
  17. Wierling A, Millat T, Röpke G, Redmer R, Reinholz H. Inverse bremsstrahlung of hot, weakly coupled plasmas. Physics of Plasmas, DOI: 10.1063/1.1383025, 2001;8:3810.
  18. Grinenko A, Gericke DO. Nonlinear collisional absorption of laser light in dense strongly coupled plasmas. Physical review letters, DOI: 10.1103/PhysRevLett.103.065005, 2009;103(6):065005.
  19. Weng S-M, Sheng Z-M, Zhang J. Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution. Physical Review E, DOI: 10.1103/PhysRevE.80.056406, 2009;80(5):056406.
  20. Farrashbandi NF, Gholamzadeh L, Eslami-Kalantari M, Sharifian M, Sid A. Investigation of the effect of laser pulse length on the inverse bremsstrahlung absorption in laserefusion plasma. High Energy Density Physics, DOI: 10.1016/j.hedp.2015.05.002, 16 (2015) 32e35. 2015.
  21. Sharifian M, Ghoveisi F, Firouzi Farrashbandi N. Inverse Bremsstrahlung absorption in under-dense plasma with Kappa distributed electrons. AIP Advances, DOI: 10.1063/1.4983475, 2017;7(5):055107.
  22. Schurtz G, Gary S, Hulin S, Chenais-Popovics C, Gauthier J-C, Thais F, et al. Revisiting nonlocal electron-energy transport in inertial-fusion conditions. Physical review letters, DOI: 10.1103/PhysRevLett.98.095002, 2007;98(9):095002.
  23. Langdon AB. Nonlinear inverse bremsstrahlung and heated-electron distributions. Physical Review Letters, DOI: 10.1103/PhysRevLett.44.575, 1980;44(9):575.
  24. Yang TYB, Kruer WL, More RM, Langdon AB. Absorption of laser light in overdense plasmas by sheath inverse bremsstrahlung. Physics of Plasmas, DOI: 10.1063/1.871146, 1995;2:3146.
  25. Jung Y-D. Dynamic plasma screening effects on semiclassical inelastic electron–ion collisions in dense plasmas. Physics of Plasmas (1994-present), DOI: 10.1063/1.872135, 1997;4(1):21-5.
  26. Kundu M. Collisional absorption of laser light in under-dense plasma: The role of Coulomb logarithm. Physics of Plasmas (1994-present), DOI: 10.1063/1.4862038, 2014;21(1):013302.
  27. Safa NN, Ghomi H, Niknam A. Effect of the q-nonextensive electron velocity distribution on a magnetized plasma sheath. Physics of Plasmas, DOI: 10.1063/1.4892966, 2014;21(8).
  28. Tribeche M, Djebarni L, Amour R. Ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution. Physics of Plasmas, DOI: 10.1063/1.3374429, 2010;17(4).
  29. Kirkpatrick RC, Lindemuth IR. Magnetized target fusion: An overview of the concept. Current trends in international fusion research, DOI: 10.1007/978-1-4615-5867-5_20, 1997:319-32.
  30. Chang P, Fiksel G, Hohenberger M, Knauer J, Betti R, Marshall F, et al. Fusion yield enhancement in magnetized laser-driven implosions. Physical review letters, DOI: 10.1103/PhysRevLett.107.035006, 2011;107(3):035006.
  31. Hohenberger M, Chang P-Y, Fiksel G, Knauer J, Betti R, Marshall F, et al. Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser a. Physics of Plasmas, DOI: 10.1063/1.3696032, 2012;19(5):056306.
  32. Sy W-C, Cotsaftis M. Wave propagation in a hot nonuniform magnetized plasma. Plasma Physics, DOI: 10.1088/0032-1028/21/12/001, 1979;21(12):985.
  33. Lima J, Silva Jr R, Santos J. Plasma oscillations and nonextensive statistics. Physical Review E, DOI: 10.1103/PhysRevE.61.3260, 2000;61(3):3260.
  34. Farrashbandi NF, Eslami-Kalantari M, Sid A. Inverse bremsstrahlung absorption in magnetized plasmas. EPL (Europhysics Letters), DOI: 10.1209/0295-5075/130/25001, 2020;130(2):25001.