Laser-magnetized plasma interaction: inverse bremsstrahlung absorption with non-Maxwellian electrons
- Department of Physics Education, Farhangian University, Tehran, Iran
- Department of Physics, Yazd University, Yazd, Iran
- Laboratory of Physics of Radiations and Their Interaction with Matter (PRIMALAB), Department of Physics, Faculty of Matter Sciences, University of Batna 1, Batna, Algeria
Received: 2024-08-01
Revised: 2024-09-08
Accepted: 2024-10-12
Published 2024-12-30
Copyright (c) -1 Narges Firouzi-Farrashbandi, Mohammad Eslami-Kalantari, Abdelaziz Sid (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 46
Abstract
In this paper, q-parameterized nonextensive distribution is used to investigate various faces of the laser-magnetized plasma interactions including Inverse Bremsstrahlung Absorption (IBA). IBA process serves as an important way of delivering laser energy to plasma in laser fusion interactions. To do this, the Fokker-Planck equation and the q-nonextensive distribution function are used while a magnetic field is taken into account. As the maximum electron velocity in the limit of goes to infinity, the q-nonextensive distribution function reduces to the standard Maxwelle-Boltzmann distribution. In this case, Laser and plasma parameters such as electron temperature, laser wavelength and nonextensivity degree are studied on IBA in magnetized plasma. Considering the existence of a static magnetic field, it is indicated that the IBA increases in the critical layer with a decrease in the laser wavelength and the strength of non-extensivity (q). But IBA varies slowly with the static magnetic field. Some instability can occur through the inverse bremsstrahlung absorption.
Keywords
- Fusion,
- Magneto-inertial,
- Plasma,
- Inverse bremsstrahlung,
- q-nonextensive,
- Fokker-Planck
References
- Kirkpatrick RC, Lindemuth IR, Ward MS. Magnetized target fusion: An overview. Fusion Technology. DOI: 10.13182/FST95-A30382, 1995;27(3):201-14.
- McKenty P, Goncharov V, Town R, Skupsky S, Betti R, McCrory R. Analysis of a direct-drive ignition capsule designed for the National Ignition Facility. Physics of Plasmas. DOI: 10.1063/1.1350571, 2001;8(5):2315-22.
- Wurden GA, Hsu SC, Intrator TP, Grabowski T, Degnan J, Domonkos M, et al. Magneto-inertial fusion. Journal of Fusion Energy,DOI: 10.1007/s10894-015-0038-x, 2016;35(1):69-77.
- Ryzhkov S. Current state, problems, and prospects of thermonuclear facilities based on the magneto-inertial confinement of hot plasma. Bulletin of the Russian Academy of Sciences: Physics, DOI: 10.3103/S1062873814050281, 2014;78(5):456-61.
- Gotchev OV, Jang NW, Knauer JP, Barbero MD, Betti R, Li CK, et al. Magneto-inertial Approach to Direct-drive Laser Fusion. Journal of Fusion Energy, DOI: 10.1007/s10894-007-9112-3, 2007;27(1-2):25-31.
- Gomez MR, Slutz SA, Sefkow AB, Sinars DB, Hahn KD, Hansen SB, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion. Physical review letters, DOI: 10.1103/PhysRevLett.113.155003, 2014;113(15):155003.
- Shahmansouri M, Alinejad H. Arbitrary amplitude electron acoustic waves in a magnetized nonextensive plasma. Astrophysics and Space Science, DOI: 10.1007/s10509-013-1533-z, 2013;347:305-13.
- Alinejad H. Effect of dust polarity on transcritical bifurcation of dust ion-acoustic waves in a nonextensive dusty plasma. Chaos, Solitons & Fractals, DOI: 10.1016/j.chaos.2022.111907, 2022;157:111907.
- Shahmansouri M, Tribeche M. Nonextensive dust acoustic shock structures in complex plasmas. Astrophysics and Space Science, DOI: 10.1007/s10509-013-1430-5, 2013;346:165-70.
- Glenzer S, Rozmus W, Bychenkov VY, Moody J, Albritton J, Berger R, et al. Anomalous absorption of high-energy green laser light in high-Z plasmas, DOI: 10.1103/PhysRevLett.88.235002, Physical review letters, DOI: 2002;88(23):235002.
- Tzeng K, Mori WB, Decker C. Anomalous absorption and scattering of short-pulse high-intensity lasers in underdense plasmas. Physical review letters, DOI: 10.1103/PhysRevLett.76.3332, 1996;76(18):3332.
- Pfalzner S. An Introduction to Inertial Confinement Fusion: Taylor & Francis/CRC Press; 2006.
- Eliezer S. The interaction of high-power lasers with plasmas, IOP Publishing Ltd 2002; 2003.
- Cauble R, Rozmus W. The inverse bremsstrahlung absorption coefficient in collisional plasmas. Physics of Fluids, DOI: 10.1063/1.865338, 1985;28(11):3387.
- Kato S, Kawakami R, Mima K. Nonlinear inverse bremsstrahlung in solid-density plasmas. Physical Review A, DOI: 10.1103/PhysRevA.43.5560, 1991;43(10):5560.
- Porshnev P, Khanevich E, Bivona S, Ferrante G. Nonlinear inverse bremsstrahlung and highly anisotropic electron distributions. Physical Review E, DOI: 10.1103/PhysRevE.53.1100, 1996;53(1):1100.
- Wierling A, Millat T, Röpke G, Redmer R, Reinholz H. Inverse bremsstrahlung of hot, weakly coupled plasmas. Physics of Plasmas, DOI: 10.1063/1.1383025, 2001;8:3810.
- Grinenko A, Gericke DO. Nonlinear collisional absorption of laser light in dense strongly coupled plasmas. Physical review letters, DOI: 10.1103/PhysRevLett.103.065005, 2009;103(6):065005.
- Weng S-M, Sheng Z-M, Zhang J. Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution. Physical Review E, DOI: 10.1103/PhysRevE.80.056406, 2009;80(5):056406.
- Farrashbandi NF, Gholamzadeh L, Eslami-Kalantari M, Sharifian M, Sid A. Investigation of the effect of laser pulse length on the inverse bremsstrahlung absorption in laserefusion plasma. High Energy Density Physics, DOI: 10.1016/j.hedp.2015.05.002, 16 (2015) 32e35. 2015.
- Sharifian M, Ghoveisi F, Firouzi Farrashbandi N. Inverse Bremsstrahlung absorption in under-dense plasma with Kappa distributed electrons. AIP Advances, DOI: 10.1063/1.4983475, 2017;7(5):055107.
- Schurtz G, Gary S, Hulin S, Chenais-Popovics C, Gauthier J-C, Thais F, et al. Revisiting nonlocal electron-energy transport in inertial-fusion conditions. Physical review letters, DOI: 10.1103/PhysRevLett.98.095002, 2007;98(9):095002.
- Langdon AB. Nonlinear inverse bremsstrahlung and heated-electron distributions. Physical Review Letters, DOI: 10.1103/PhysRevLett.44.575, 1980;44(9):575.
- Yang TYB, Kruer WL, More RM, Langdon AB. Absorption of laser light in overdense plasmas by sheath inverse bremsstrahlung. Physics of Plasmas, DOI: 10.1063/1.871146, 1995;2:3146.
- Jung Y-D. Dynamic plasma screening effects on semiclassical inelastic electron–ion collisions in dense plasmas. Physics of Plasmas (1994-present), DOI: 10.1063/1.872135, 1997;4(1):21-5.
- Kundu M. Collisional absorption of laser light in under-dense plasma: The role of Coulomb logarithm. Physics of Plasmas (1994-present), DOI: 10.1063/1.4862038, 2014;21(1):013302.
- Safa NN, Ghomi H, Niknam A. Effect of the q-nonextensive electron velocity distribution on a magnetized plasma sheath. Physics of Plasmas, DOI: 10.1063/1.4892966, 2014;21(8).
- Tribeche M, Djebarni L, Amour R. Ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution. Physics of Plasmas, DOI: 10.1063/1.3374429, 2010;17(4).
- Kirkpatrick RC, Lindemuth IR. Magnetized target fusion: An overview of the concept. Current trends in international fusion research, DOI: 10.1007/978-1-4615-5867-5_20, 1997:319-32.
- Chang P, Fiksel G, Hohenberger M, Knauer J, Betti R, Marshall F, et al. Fusion yield enhancement in magnetized laser-driven implosions. Physical review letters, DOI: 10.1103/PhysRevLett.107.035006, 2011;107(3):035006.
- Hohenberger M, Chang P-Y, Fiksel G, Knauer J, Betti R, Marshall F, et al. Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser a. Physics of Plasmas, DOI: 10.1063/1.3696032, 2012;19(5):056306.
- Sy W-C, Cotsaftis M. Wave propagation in a hot nonuniform magnetized plasma. Plasma Physics, DOI: 10.1088/0032-1028/21/12/001, 1979;21(12):985.
- Lima J, Silva Jr R, Santos J. Plasma oscillations and nonextensive statistics. Physical Review E, DOI: 10.1103/PhysRevE.61.3260, 2000;61(3):3260.
- Farrashbandi NF, Eslami-Kalantari M, Sid A. Inverse bremsstrahlung absorption in magnetized plasmas. EPL (Europhysics Letters), DOI: 10.1209/0295-5075/130/25001, 2020;130(2):25001.