10.57647/j.jtap.2024.1806.71

Degradation of diazinon and endosulfan pesticides using surface dielectric barrier discharge cold plasma employing Ar/H2O/H2O2 working gas

  1. Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
  2. Plasma Technology Research Core, Faculty of Science, University of Mazandaran, Babolsar, Iran
  3. Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran  AND  Plasma Technology Research Core, Faculty of Science, University of Mazandaran, Babolsar, Iran
Degradation of diazinon and endosulfan pesticides using surface dielectric barrier discharge cold plasma employing Ar/H2O/H2O2 working gas

Received: 2024-08-26

Revised: 2024-10-11

Accepted: 2024-10-16

Published 2024-12-30

How to Cite

1.
Hadi H, Zakeri Khatir H, Hajiebrahimi E, Sohbatzadeh F. Degradation of diazinon and endosulfan pesticides using surface dielectric barrier discharge cold plasma employing Ar/H2O/H2O2 working gas. J Theor Appl phys. 2024 Dec. 30;18(6). Available from: https://oiccpress.com/jtap/article/view/8327

PDF views: 82

Abstract

Water refinement from stable organic compounds has faced challenges in conventional approaches. Non-thermal plasma technology as an advanced oxidation process (AOP) is an eco-friendly water and wastewater treatment solution. In this study, the capability of the dielectric barrier discharge (DBD) plasma was examined to degrade diazinon and endosulfan pesticides from an aqueous solution by employing a combined gas of Ar/H2O/H2O2.  This approach introduces the synergistic effect of the DBD plasma and hydrogen peroxide oxidant for the pesticide degradation method.  This study compared the effects of Ar/H2O/H2O2 gas without plasma running, Ar plasma, and Ar/H2O/H2O2 SDBD plasma in pesticide reduction. The results demonstrated that combining Ar and H2O/H2O2 cold vapor in SDBD plasma significantly enhances pesticide degradation compared to using either method alone. While the reduction efficiency of the hydrogen peroxide oxidant was 17% and 18 % for diazinon and endosulfan, it was enhanced by the Ar SDBD to 30% and 37%, respectively after 15 minutes of indirect treatment. Moreover, introducing H2O/H2O2 vapor into the Ar SDBD plasma (Ar/H2O/H2O2 SDBD) achieved a 60% and 65% reduction in diazinon and endosulfan, respectively, after 15 minutes of treatment, highlighting its potential as a sustainable and efficient method for pesticide removal from water. The energy yield ( ) as a measure of the efficiencies of the removal of the diazinon and endosulfan pesticides are and , respectively for Ar/H2O/H2O2 SDBD.  The study also found that running frequency, dielectric thickness, treatment time, and working voltage can significantly affect the degradation efficiency. Reactive oxygen species (ROS) such as O3, H2O2, OH*, aquas electrons, and other plasma species are responsible for the degradation of these pesticides. This research generally indicates the high potential of the Ar/H2O/H2O2 SDBD plasma as an alternative approach for rapidly reducing agriculture activity-related chemicals in water.

Keywords

  • Atmospheric pressure non-thermal plasma,
  • Diazinon,
  • Endosulfan,
  • Hydrogen peroxide,
  • Surface dielectric barrier discharge (SDBD)

References

  1. A. Kumar, N. Škoro, W. Gernjak, and N. Puač. “Cold atmospheric plasma technology for removal of organic micropollutants from wastewater—a review.”. The European Physical Journal D, 75:1-26, 2021. DOI: https://doi.org/10.1140/epjd/s10053-021-00283-5.
  2. L. Joseph, B. M. Jun, J. R. Flora, C. M. Park, and Y. Yoon. “Removal of heavy metals from water sources in the developing world using low-cost materials: A review.”. Chemosphere, 229: 142-159, 2019. DOI: https://doi.org/10.1016/j.chemosphere.2019.04.198.
  3. J. Foster, B. S. Sommers, S. N. Gucker, I. M. Blankson, and G. Adamovsky. “Perspectives on the interaction of plasmas with liquid water for water purification.”. IEEE Transactions on Plasma Science, 40:1311-1323, 2012. DOI: 10.1109/TPS.2011.2180028.
  4. C. Sarangapani, M. N. Misra, V. Milosavljevic, P. Bourke, F. O’Regan, and P. J. Cullen. “Pesticide degradation in water using atmospheric air cold plasma.”. Journal of Water Process Engineering, 9:225-232, 2016. DOI: https://doi.org/10.1016/j.jwpe.2016.01.003.
  5. J. E. Foster. “Plasma-based water purification: Challenges and prospects for the future.”. Physics of Plasmas, 24:055501, 2017. DOI: https://doi.org/10.1063/1.4977921.
  6. A. Barjasteh, Z. Dehghani, P. Lamichhane, N. Kaushik,E. H. Choi, and N. K. Kaushik. “Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination.”. Applied sciences, 11:3372, 2021. DOI: https://doi.org/10.3390/app11083372.
  7. Y. Yang, Y. I. Cho, and A. Fridman. “Plasma discharge in liquid: water treatment and applications.”. CRC Press, 1st ed., 2012. DOI: https://doi.org/10.1201/b11650.
  8. M. Kogan, and J. D. Lattin. “Insect conservation and pest management.”. Biodivers Conserv, 2:242–257, 1993. https://doi.org/10.1007/BF00056671.
  9. M. Arias-Estévez, E. López-Periago, E. Martínez-Carballo, J. Simal-Gándara, J. C. Mejuto, and L. García-Río. “The mobility and degradation of pesticides in soils and the pollution of groundwater resources.”. Agriculture, ecosystems & environment, 123:247-260.
  10. DOI: https://doi.org/10.1016/j.agee.2007.07.011
  11. K. Ikehata, and M. G. El-Din. “Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review.”. Journal of Environmental Engineering and Science, 5:81-135, 2006.
  12. DOI:https://doi.org/10.1139/s05-046.
  13. A. Alipour, A. Alizadeh, and P. Khodaygan. “Evaluation of diazinon pesticide biodegradation by isolated indigenous bacteria from contaminated soil.”. Journal of Microbial Biology, 7:73-86, 2018. DOI: 10.22108/BJM.2017.101617.1025.
  14. M. Biziuk, and J. Stocka. “Multiresidue methods for determination of currently used pesticides in fruits and vegetables using QuEChERS technique.”. International Journal of Environmental Science and Development, 6:18, 2015. DOI: 10.7763/IJESD.2015.V6.554.
  15. F. E. R. Júnior, and F. A. Fernandes. “Degradation of diazinon by dielectric barrier discharge plasma.”. Journal of Environmental Chemical Engineering, 12:111539, 2024.
  16. DOI: https://doi.org/10.1016/j.jece.2023.111539.
  17. R. Golshani, G. G. Zafarani, M. Rebezov, S. Karbalaei, and T. R. Walker. “Assessment of organophosphorus pesticide residues in water and sediment collected from the Southern Caspian Sea.”. Applied Environmental Research, 44:18-31, 2022. DOI:https://doi.org/10.35762/AER.2022.44.2.2.
  18. K. H. H. Aziz, H. Miessner, S. Mueller, A. Mahyar, D. Kalass, D. Moeller, I. Khorshid, and M. A. M. Rashid. “Comparative study on 2, 4-dichlorophenoxyacetic acid and 2, 4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor.”. Journal of hazardous materials, 343:107-115, 2018. DOI: https://doi.org/10.1016/j.jhazmat.2017.09.025.
  19. K. H. H. Aziz, H. Miessner, A. Mahyar, S. Mueller, D. Kalass, D. Moeller, and K. M. Omer. “Removal of dichloroacetic acid from aqueous solution using non-thermal plasma generated by dielectric barrier discharge and nano-pulse corona discharge.”. Separation and Purification Technology, 216:51-57, 2019. DOI: https://doi.org/10.1016/j.seppur.2019.01.074.
  20. K. H. H. Aziz, F. S. Mustafa, K. M. Omer, and I. Shafiq. “Recent advances in water falling film reactor designs for the removal of organic pollutants by advanced oxidation processes: a review.”. Water Resources and Industry, 30:100227, 2023. DOI:https://doi.org/10.1016/j.wri.2023.100227.
  21. K. H. H. Aziz, H. Miessner, S. Mueller, D. Kalass, D. Moeller, I. Khorshid, and M. A. M. Rashid. “Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma.”. Chemical Engineering Journal, 313:1033-1041, 2017. DOI: https://doi.org/10.1016/j.cej.2016.10.137.
  22. P. A. Giguère, and O. Maass. “Vapour pressures and boiling points of binary mixtures of hydrogen peroxide and water.”. Canadian Journal of Research, 18:181-193, 1940.
  23. DOI: https://doi.org/10.1139/cjr40b-023.
  24. F. Sohbatzadeh, H. Yazdanshenas, A. Soltani, and A. Shabannejad. “An innovative strategy to rapidly inactivate 8.2-log Enterococcus faecalis in fresh pineapple juice using cold atmospheric plasma.”. Scientific Reports, 11: 16010, 2021.
  25. DOI: https://doi.org/10.1038/s41598-021-95452-2.
  26. N. Jidenko, M. Petit, and J. P. Borra. “Electrical characterization of microdischarges produced by dielectric barrier discharge in dry air at atmospheric pressure.”. Journal of Physics D: Applied Physics, 39:281, 2006. DOI: 10.1088/0022-3727/39/2/008.
  27. B. P. Dojčinović, M. R. Goran, M. O. Bratislav. M. K. Milorad, M. K. Mirjana, N. Jelena, D. M. Dragan. “Decolorization of reactive textile dyes using water falling film dielectric barrier discharge.”. Journal of Hazardous Materials, 192:763-771, 2011.
  28. DOI: https://doi.org/10.1016/j.jhazmat.2011.05.086.
  29. Y. Bai, J. Chen, Y. Yang, L. Guo, and C. Zhang. “Degradation of organophosphorus pesticide induced by oxygen plasma: effects of operating parameters and reaction mechanisms.”. Chemosphere, 81:408-414, 2010.
  30. DOI: https://doi.org/10.1016/j.chemosphere.2010.06.071.
  31. Y. Bai, J. Chen, H. Mu, C. Zhang, and B. Li. “Reduction of dichlorvos and omethoate residues by O2 plasma treatment.”. Journal of agricultural and food chemistry, 57:6238-6245, 2009. DOI: https://doi.org/10.1021/jf900995d.
  32. R. Zhou, R. Zhou, F. Yu, D. Xi, P. Wang, J. Li, X. Wang, X. Zhang, K. Bazaka, and K. K. Ostrikov. “Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma.”. Chemical Engineering Journal, 342:401-409, 2018.
  33. DOI: https://doi.org/10.1016/j.cej.2018.02.107.
  34. M. Gavahian, S. Chaitanya, and N. N. Misra. “Cold plasma for mitigating agrochemical and pesticide residue in food and water: Similarities with ozone and ultraviolet technologies.”. Food Research International, 141:110138, 2021. DOI: https://doi.org/10.1016/j.foodres.2021.110138.
  35. E. Chamberlain, H. Shi, T. Wang, Y. Ma, A. Fulmer, and C. Adams. “Comprehensive screening study of pesticide degradation via oxidation and hydrolysis.”. Journal of agricultural and food chemistry, 60:354-363, 2012. DOI: https://doi.org/10.1021/jf2033158.
  36. E. I. Epelle, A. Macfarlane, M. Cusack, A. Burns, J. A. Okolie, W. Mackay, M. Rateb, and M. Yaseen. “Ozone application in different industries: A review of recent developments.”. Chemical Engineering Journal, 454:140188, 2023.
  37. DOI: https://doi.org/10.1016/j.cej.2022.140188.
  38. L. Cong, M. Huang, J. Zhang, and W. Yan. “Effect of dielectric barrier discharge plasma on the degradation of malathion and chlorpyrifos on lettuce.”. Journal of the Science of Food and Agriculture, 101:424-432, 2021. DOI: https://doi.org/10.1002/jsfa.10651.
  39. R. Moutiq, S. K. Pankaj, Z. Wan, A. Mendonca, K. Keener, and N. N. Misra. “Atmospheric pressure cold plasma as a potential technology to degrade carbamate residues in water.”. Plasma Chemistry and Plasma Processing, 40:1291-1309, 2020.
  40. DOI: https://doi.org/10.1007/s11090-020-10093-z.
  41. S. K. Pankaj, N. N. Misra, and P. J. Cullen. “Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge.”. Innovative Food Science & Emerging Technologies, 19:153-157, 2013.
  42. DOI: https://doi.org/10.1016/j.ifset.2013.03.001.
  43. C. Sarangapani, G. O'Toole, P. J. Cullen, and P. Bourke. “Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries.”. Innovative Food Science & Emerging Technologies, 44:235-241, 2017. DOI: https://doi.org/10.1016/j.ifset.2017.02.012.
  44. P. Bruggeman, and D. C. Schram. “On OH production in water containing atmospheric pressure plasmas.”. Plasma Sources Science and Technology, 19:045025, 2010.
  45. DOI: 10.1088/0963-0252/19/4/045025.
  46. B. Sun, M. Sato, and J. S. Clements. “Optical study of active species produced by a pulsed streamer corona discharge in water.”. Journal of Electrostatics, 39: 189-202, 1997.
  47. DOI: https://doi.org/10.1016/S0304-3886(97)00002-8.
  48. P. Bruggeman, J. L. Walsh, D. C. Schram, C. Leys, and M. G. Kong. “Time dependent optical emission spectroscopy of sub-microsecond pulsed plasmas in air with water cathode.”. Plasma Sources Science and Technology, 18: 045023, 2009.
  49. DOI: 10.1088/0963-0252/18/4/045023.
  50. Q. Xiong, Z. Yang, and P. J. Bruggeman. “Absolute OH density measurements in an atmospheric pressure dc glow discharge in air with water electrode by broadband UV absorption spectroscopy.”. Journal of Physics D: Applied Physics, 48:424008, 2015.
  51. DOI: 10.1088/0022-3727/48/42/424008.
  52. G. Dilecce, P. F. Ambrico, M. Simek, and S. De Benedictis. “OH density measurement by time-resolved broad band absorption spectroscopy in an Ar–H2O dielectric barrier discharge.”. Journal of Physics D: Applied Physics, 45:125203, 2012.
  53. DOI: 10.1088/0022-3727/45/12/125203
  54. S. Kanazawa, H. Kawano, S. Watanabe, T. Furuki, S. Akamine, R. Ichiki, T. Ohkubo, M. Kocik, and J. Mizeraczyk. “Observation of OH radicals produced by pulsed discharges on the surface of a liquid.”. Plasma Sources Science and Technology, 20:034010, 2011.
  55. DOI: 10.1088/0963-0252/20/3/034010.
  56. R. Ono, and T. Oda. “Dynamics and density estimation of hydroxyl radicals in a pulsed corona discharge.”. Journal of Physics D: Applied Physics, 35:2133, 2002.
  57. DOI: 10.1088/0022-3727/35/17/309.
  58. C. Winters, V. Petrishchev, Z. Yin, W. R. Lempert, and I. V. Adamovich. “Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid/vapor interface.”. Journal of Physics D: Applied Physics, 48:424002, 2015. DOI:10.1088/0022-3727/48/42/424002.
  59. E. Marotta, M. Schiorlin, X. Ren, M. Rea, and C. Paradisi. “Advanced oxidation process for degradation of aqueous phenol in a dielectric barrier discharge reactor.”. Plasma Processes and Polymers, 8:867-875, 2011, DOI: https://doi.org/10.1002/ppap.201100036.
  60. U. Kogelschatz. “Dielectric-barrier discharges: their history, discharge physics, and industrial applications.”. Plasma chemistry and plasma processing, 23:1-46, 2003.
  61. DOI: https://doi.org/10.1023/A:1022470901385.
  62. P. Lukes, M. Clupek, V. Babicky, V. Janda, and P. Sunka. “Generation of ozone by pulsed corona discharge over water surface in hybrid gas–liquid electrical discharge reactor.”. Journal of Physics D: Applied Physics, 38:409, 2005. DOI: 10.1088/0022-3727/38/3/010.
  63. P. Lukes, A. T. Appleton, and B. R. Locke. “Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge reactors.”. IEEE Transactions on Industry Applications, 40:60-67, 2004. DOI:10.1109/TIA.2003.821799.
  64. M. Magureanu, D. Dobrin, C. Bradu, F. Gherendi, N. B. Mandache, and V. I. Parvulescu. “New evidence on the formation of oxidizing species in corona discharge in contact with liquid and their reactions with organic compounds.”. Chemosphere, 165:507-514, 2016.
  65. DOI: https://doi.org/10.1016/j.chemosphere.2016.09.073.
  66. W. Hoeben, E. M. Van Veldhuizen, W. R. Rutgers, and G. M. W. Kroesen. “Gas phase corona discharges for oxidation of phenol in an aqueous solution.”. Journal of physics D: Applied physics, 32:L133, 1999. DOI: 10.1088/0022-3727/32/24/103.
  67. D. Dobrin, C. Bradu, M. Magureanu, N. B. Mandache, and V. I. Parvulescu. “Degradation of diclofenac in water using a pulsed corona discharge.”. Chemical engineering journal, 234: 389-396, 2013. DOI: https://doi.org/10.1016/j.cej.2013.08.114.
  68. B. R. Locke, and K. Y. Shih. “Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. “Plasma Sources Science and Technology, 20:034006, 2011. DOI: 10.1088/0963-0252/20/3/034006.
  69. S. M. Thagard, K. Takashima, and A. Mizuno. “Chemistry of the positive and negative electrical discharges formed in liquid water and above a gas–liquid surface.”. Plasma Chemistry and Plasma Processing, 29:455-473, 2009. DOI: https://doi.org/10.1007/s11090-009-9195-x
  70. J. Franclemont, X. Fan, and S. M. Thagard. “Physicochemical mechanisms of plasma-liquid interactions within plasma channels in liquid.”. Journal of Physics D: Applied Physics, 48:424004, 2015. DOI: 10.1088/0022-3727/48/42/424004.
  71. L. A. Kuz'micheva, Y. V. Titova, and A. I. Maksimov. “Investigation of the opportunity for increasing the yield of hydrogen peroxide in plasma-solution systems.”. Surface Engineering and Applied Electrochemistry, 44:281-284, 2008. DOI: https://doi.org/10.3103/S1068375508040054.
  72. C, Bradu, M, Magureanu, and V. I. Parvulescu. “Degradation of the chlorophenoxyacetic herbicide 2, 4-D by plasma-ozonation system.”. Journal of hazardous materials, 336:52-56, 2017. DOI: https://doi.org/10.1016/j.jhazmat.2017.04.050.
  73. P. Lukes, E. Dolezalova, I. Sisrova, and M. Clupek. “Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2.”. Plasma Sources Science and Technology, 23:015019, 2014.
  74. DOI: 10.1088/0963-0252/23/1/015019.
  75. U. Al-Obaidi, and R. B. Moodie. “The nitrous acid-catalysed nitration of phenol.”. Journal of the Chemical Society, Perkin Transactions, 23:467-472, 1985.
  76. DOI: https://doi.org/10.1039/P29850000467.
  77. N. Nonoyama, K. Hisatome, C. Shoda, and H. Suzuki. “Reactions of peroxynitrite with N, N-dimethyl-p-toluidine and 1, 4-naphthoquinone. Evidence for heterolytic cleavage of a nitrogen oxygen bond in peroxynitrous acid.”. Tetrahedron letters, 40:6939-6940, 1999.
  78. DOI: https://doi.org/10.1016/S0040-4039(99)01239-3.
  79. B. R. Locke, P. Lukes, and J. L. Brisset. “Plasma Chemistry and Catalysis in Gases and Liquids.”. V. I. Parvulescu, M. Magureanu, and P. Lukes. Wiley‐VCH Verlag GmbH & Co. KGaA, Chapter 7, 2012,
  80. DOI: 10.1002/9783527649525
  81. S. B. Martínez, J. Pérez-Parra, and R. Suay. “Use of Ozone in Wastewater Treatment to Produce Water Suitable for Irrigation.”. Water Resources Management, 25, 2109–2124, 2011.
  82. DOI: https://doi.org/10.1007/s11269-011-9798-x.
  83. K. Z. Elwakeel. “Removal of Reactive Black 5 from aqueous solutions using magnetic chitosan resins.”. Journal of hazardous materials, 167:383-392, 2009.
  84. DOI: https://doi.org/10.1016/j.jhazmat.2009.01.051.
  85. C. Tizaoui, and N. Grima. “Kinetics of the ozone oxidation of Reactive Orange 16 azo-dye in aqueous solution.”. Chemical Engineering Journal, 173:463-473, 2011.
  86. DOI: https://doi.org/10.1016/j.cej.2011.08.014