The time wave equation with new conformable fractional derivative definition
- AMSC Laboratory, University of Sciences and Technology , Beni Mellal, Morocco
- OEE Departement, ENCGJ, University of Chouaib Doukali, El jadida, Morocco
Received: 2025-01-26
Revised: 2025-02-15
Accepted: 2025-06-27
Published in Issue 2025-09-30
Copyright (c) 2025 Abdessamad Ait Brahim, Abdelmajid El Hajaji, Khalid Hilal (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 2
Abstract
This study employs a novel approach to solving two and three-dimensional time fractional wave equations by
utilizing the new results of fractional derivative definition, with a particular focus on the newly introduced
“New conformable fractional derivative” as outlined in [1]:
DNβ(t)=h→0limhN(t+he(β−1)t)−N(t),β∈[0,1)
where N : [0,∞) →R a function and β ∈[0,1). This definition offers simplicity and high effectiveness in
addressing fractional differential equations with complex solutions, surpassing traditional fractional derivative
definitions such as Caputo and Riemann-Liouville. Our findings indicate that the new conformable fractional
derivative definition is both practical and efficient for resolving higher-dimensional fractional differential
equations.
Keywords
- Fractional wave equation,
- New conformable fractional derivative
References
- A. Kajouni, A. Chafiki, K. Hilal, and M. Oukessou. “A New Conformable Fractional Derivative and Applications.”. International Journal of Differential Equations, 2022. DOI: https://doi.org/10.1155/2021/6245435
- K. S. Miller and B. Ross. “An Introduction to the Fractional Calculus and Fractional Differential Equations.”. Wiley-Interscience Publication, 1993.
- [3] A. Esen, N. M. Yagmurlu, and O. Tasbozan. “Approximate Analytical Solution to Time-Fractional Damped Burger and Cahn-Allen Equations.”. Applied Mathematics and Information Sciences, 7: 1951–1956, 2013. DOI: https://doi.org/10.12785/amis/070533.
- A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. “Theory and Applications of Fractional Differential Equations.”. Elsevier, 2006.
- H. Wang and B. Zheng. “Exact solutions for fractional partial differential equations by an extended fractional Riccati sub-equation method.”. WSEAS Transactions on Mathematics, 13:952–961, 2014. DOI: https://doi.org/10.1063/1.4892534.
- I. Goychuk and P. Hanggi. “Fractional diffusion modeling of ion channel gating.”. Phys Rev. E, 70(5):1–9, 2004.
- M. Abu Hammad and R. Khalil. “Conformable Fractional Heat Differential Equation.”. International Journal of Pure and Applied Mathematics, 94:215–221, 2014. DOI: https://doi.org/10.12732/ijpam.v94i2.8.
- B. K. Dutta and L. K. Arora. “On the existence and uniqueness of solutions of a class of initial value problems of fractional order.”. Mathematical Sciences, page 20137, 2013. DOI: https://doi.org/10.1186/2251-7456-7-17.
- Y. C¸enesiz and A. Kurt. “The new solution of time fractional wave equation with conformable fractional derivative.”. Journal of New Theory (7):79–85, 2015. URL www.newtheory.org.
- E. Juan, N. Valdes, P. M. guzm´an, L. M. Lugo, and A. Kashuri. “The local generalized derivative and Mittag-Leffler function.”. Sigma J Eng, Nat Sci, 38:1007–1017, 2020. DOI: https://doi.org/10.33044/revuma.
- V. C. Miguel, A. Fleitas, P. M. Guzm´an, J. E. N´apoles, and J. J. Rosales. “Newton’s law of cooling with generalized conformable derivatives.”. Symmetry, 13:1093, 2021. DOI: https://doi.org/10.3390/sym13061093.
- R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh. “A new definition of fractional derivative.”. Journal of Computational and Applied Mathematics, 264:65–70, 2014. DOI: https://doi.org/10.1016/j.cam.2014.01.002.
- T. Abdeljawad. “On conformable fractional calculus.”. Journal of Computational and Applied Mathematics, 279:57–66, 2015. DOI: https://doi.org/10.1016/j.cam.2014.10.016.
- K. S. Miller. “An Introduction to Fractional Calculus and Fractional Differential Equations.”. J. Wiley and Sons, 2006. DOI: https://doi.org/10.12691/ajma-3-3-1.
- A. Kilbas, H. Srivastava, and J. Trujillo. “Theory and applications of fractional differential equations.”. Math. Studies, 2006. DOI: https://doi.org/10.1016/S0304-0208(06)80001-0.
- I. Podlubny. “Fractional Differential Equations.”. Academic Press, 1999.
10.57647/j.jtap.2025.1905.52
