10.57647/j.jtap.2025.1905.52

The time wave equation with new conformable fractional derivative definition

  1. AMSC Laboratory, University of Sciences and Technology , Beni Mellal, Morocco
  2. OEE Departement, ENCGJ, University of Chouaib Doukali, El jadida, Morocco

Received: 2025-01-26

Revised: 2025-02-15

Accepted: 2025-06-27

Published in Issue 2025-09-30

How to Cite

1.
Brahim AA, El Hajaji A, Hilal K. The time wave equation with new conformable fractional derivative definition. J Theor Appl phys. 2025 Sep. 30;19(5). Available from: https://oiccpress.com/jtap/article/view/17964

PDF views: 2

Abstract

 This study employs a novel approach to solving two and three-dimensional time fractional wave equations by
 utilizing the new results of fractional derivative definition, with a particular focus on the newly introduced
 “New conformable fractional derivative” as outlined in [1]: 
 DNβ​(t)=h→0lim​hN(t+he(β−1)t)−N(t)​,β∈[0,1)
 where N : [0,∞) →R a function and β ∈[0,1). This definition offers simplicity and high effectiveness in
 addressing fractional differential equations with complex solutions, surpassing traditional fractional derivative
 definitions such as Caputo and Riemann-Liouville. Our findings indicate that the new conformable fractional
 derivative definition is both practical and efficient for resolving higher-dimensional fractional differential
 equations.

Keywords

  • Fractional wave equation,
  • New conformable fractional derivative

References

  1. A. Kajouni, A. Chafiki, K. Hilal, and M. Oukessou. “A New Conformable Fractional Derivative and Applications.”. International Journal of Differential Equations, 2022. DOI: https://doi.org/10.1155/2021/6245435
  2. K. S. Miller and B. Ross. “An Introduction to the Fractional Calculus and Fractional Differential Equations.”. Wiley-Interscience Publication, 1993.
  3. [3] A. Esen, N. M. Yagmurlu, and O. Tasbozan. “Approximate Analytical Solution to Time-Fractional Damped Burger and Cahn-Allen Equations.”. Applied Mathematics and Information Sciences, 7: 1951–1956, 2013. DOI: https://doi.org/10.12785/amis/070533.
  4. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. “Theory and Applications of Fractional Differential Equations.”. Elsevier, 2006.
  5. H. Wang and B. Zheng. “Exact solutions for fractional partial differential equations by an extended fractional Riccati sub-equation method.”. WSEAS Transactions on Mathematics, 13:952–961, 2014. DOI: https://doi.org/10.1063/1.4892534.
  6. I. Goychuk and P. Hanggi. “Fractional diffusion modeling of ion channel gating.”. Phys Rev. E, 70(5):1–9, 2004.
  7. M. Abu Hammad and R. Khalil. “Conformable Fractional Heat Differential Equation.”. International Journal of Pure and Applied Mathematics, 94:215–221, 2014. DOI: https://doi.org/10.12732/ijpam.v94i2.8.
  8. B. K. Dutta and L. K. Arora. “On the existence and uniqueness of solutions of a class of initial value problems of fractional order.”. Mathematical Sciences, page 20137, 2013. DOI: https://doi.org/10.1186/2251-7456-7-17.
  9. Y. C¸enesiz and A. Kurt. “The new solution of time fractional wave equation with conformable fractional derivative.”. Journal of New Theory (7):79–85, 2015. URL www.newtheory.org.
  10. E. Juan, N. Valdes, P. M. guzm´an, L. M. Lugo, and A. Kashuri. “The local generalized derivative and Mittag-Leffler function.”. Sigma J Eng, Nat Sci, 38:1007–1017, 2020. DOI: https://doi.org/10.33044/revuma.
  11. V. C. Miguel, A. Fleitas, P. M. Guzm´an, J. E. N´apoles, and J. J. Rosales. “Newton’s law of cooling with generalized conformable derivatives.”. Symmetry, 13:1093, 2021. DOI: https://doi.org/10.3390/sym13061093.
  12. R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh. “A new definition of fractional derivative.”. Journal of Computational and Applied Mathematics, 264:65–70, 2014. DOI: https://doi.org/10.1016/j.cam.2014.01.002.
  13. T. Abdeljawad. “On conformable fractional calculus.”. Journal of Computational and Applied Mathematics, 279:57–66, 2015. DOI: https://doi.org/10.1016/j.cam.2014.10.016.
  14. K. S. Miller. “An Introduction to Fractional Calculus and Fractional Differential Equations.”. J. Wiley and Sons, 2006. DOI: https://doi.org/10.12691/ajma-3-3-1.
  15. A. Kilbas, H. Srivastava, and J. Trujillo. “Theory and applications of fractional differential equations.”. Math. Studies, 2006. DOI: https://doi.org/10.1016/S0304-0208(06)80001-0.
  16. I. Podlubny. “Fractional Differential Equations.”. Academic Press, 1999.