10.57647/j.jtap.2025.1905.47

The effect of adding nano-nickel oxide on the physical properties of (Al-SiO2) by powder method

  1. Physics Department, College of Education for Women, Kirkuk University, Kirkuk, Iraq
  2. Physics Department, College of Science, Tikrit University, Tikrıt, Iraq

Received: 2025-07-20

Revised: 2025-08-15

Accepted: 2025-08-26

Published in Issue 2025-09-30

How to Cite

1.
Majeed ZN, Mohammed TA, Darweesh SY. The effect of adding nano-nickel oxide on the physical properties of (Al-SiO2) by powder method. J Theor Appl phys. 2025 Sep. 30;19(5). Available from: https://oiccpress.com/jtap/article/view/17679

PDF views: 4

Abstract

There are a wide range of methods used to manufacture the materials, and one of these methods is powder technology, which is usually easy to manufacture at the lowest possible cost. Aluminium was used as a base material with a percentage of 3%wt.SiO2, and nano-nickel oxide were added in different volume ratios, namely (2,4,6,8,10)%wt. The different powders were mixed using a locally made powder, and a pressing mould with a diameter of 10mm was prepared. The mixed powders were pressed using a hydraulic press at 5 tons. The samples resulting from the pressing process were heat treated in an oven at a temperature of 600˚C for two hours. A number of physical tests were conducted on the resulting samples before and after thermal sintering, including scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (EDS). The true density, true porosity and water absorption were also tested, as well as the hardness, compressive strength and wear rate. The results showed that the best mixing ratio is 10%wt. before and after thermal sintering, which gave high surface homogeneity, hardness and compressive strength with the lowest wear rate. We also found an increase in the values of true density and porosity with a decrease in water absorption.

Keywords

  • Adhesive strength,
  • Cermet,
  • SEM,
  • Silica,
  • Wear rate

References

  1. P. C. Angelo, R. Subramanian, B. Ravisankar, "Powder metallurgy: science, technology and applications", PHI Learning Pvt. Ltd., (2022).
  2. R. Bogue, Assembly Automation 29(3), 214 (2009). https://doi.org/10.1108/01445150910972895
  3. R. Singh, R. P. Singh, R. Trehan, Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 235(3), 333 (2021). https://doi.org/10.1177/0954405420958771
  4. Z. Z. Fang, J. D. Paramore, P. Sun, K. R. Chandran, Y. Zhang, Y. Xia, M. Free, Int. Mater. Rev. 63(7), 407 (2018). https://doi.org/10.1080/09506608.2017.1366003
  5. O. Erdem, Int. J. Eng. Res. Dev. 9(3), 100 (2017). https://doi.org/10.29137/umagd.349955
  6. E. J. Salih, S. M. A. Allah, S. Y. Darweesh, H. A. Mohammed, J. Phys.: Conf. Ser. 1999(1), 012068 (2021). https://doi.org/10.1088/1742-6596/1999/1/012068
  7. J. Su, F. Jiang, J. Teng, L. Chen, M. Yan, G. Requena, C. Tan, Int. J. Extreme Manuf. 6(3), 032001 (2024). https://doi.org/10.1088/2631-7990/ad2545
  8. M. T. Chen, T. Zhang, Z. Gong, W. Zuo, Z. Wang, L. Zong, L. Hu, Eng. Struct. 300, 117092 (2024). https://doi.org/10.1016/j.engstruct.2023.117092
  9. L. F. Quesada-Bedoya, J. Sandoval-Guerrero, S. Bernal-Del Ro, R. Mejía-Gutiérrez, G. Osorio-Gómez, Wind Eng., 0309524X241229405 (2024). https://doi.org/10.1177/0309524X241229405
  10. A. M. Ibrahim, S. M. A. Allah, S. Y. Darweesh, AIP Conf. Proc. 2398(1), (2022). https://doi.org/10.1063/5.0094035
  11. E. J. Adler, J. R. Martins, Prog. Aerosp. Sci. 141, 100922 (2023). https://doi.org/10.1016/j.paerosci.2023.100922
  12. I. Ripoşan, S. Stan, "History of Metallurgy", in History of Romanian Technology and Industry, Springer, Cham, pp. 39–56 (2023). https://doi.org/10.1007/978-3-031-39393-8_4
  13. S. A. Kareem, J. U. Anaele, E. O. Aikulola, T. A. Adewole, M. O. Bodunrin, K. K. Alaneme, J. Alloys Metall. Syst. 5, 100057 (2024). https://doi.org/10.1016/j.jalmes.2024.100057
  14. İ. Topcu, Düzce Univ. Sci. Technol. J. 12(1), 143 (2024). https://doi.org/10.29130/dubited.1062744
  15. J. S. Evarts, S. Chong, J. M. Oshiro, B. J. Riley, R. M. Asmussen, J. S. McCloy, Ind. Eng. Chem. Res. 63(14), 6003 (2024). https://doi.org/10.1021/acsomega.4c03378
  16. E. B. Moustafa, A. Aljabri, W. S. Abushanab, E. Ghandourah, M. A. Taha, A. B. Khoshaim, S. S. Mohamed, Sci. Rep. 14(1), 2862 (2024). https://doi.org/10.1038/s41598-024-53061-9
  17. A. Aramian, Z. Sadeghian, M. Narimani, N. Razavi, F. Berto, Int. J. Refract. Met. Hard Mater. 106320 (2023). https://doi.org/10.1016/j.ijrmhm.2023.106320
  18. S. A. Jose, M. John, P. L. Menezes, Ceramics 5(2), 210 (2022). https://doi.org/10.3390/ceramics5020018
  19. R. S. Antar, S. Y. Darweesh, F. W. Ridha, Eng. Res. Express 6(1), 015407 (2024). https://doi.org/10.1088/2631-8695/ad2f82
  20. S. M. Ghareeb, S. M. A. Allah, S. Y. Darweesh, J. Phys.: Conf. Ser. 1999(1), 012040 (2021). https://doi.org/10.1088/1742-6596/1999/1/012040
  21. M. R. Akbarzadeh, H. Ghafourian, A. Anvari, R. Pourhanasa, M. L. Nehdi, Materials 16(11), 4200 (2023). https://doi.org/10.3390/ma16114200
  22. P. Bharathi, T. S. Kumar, Silicon 15(10), 4259 (2023). https://doi.org/10.1007/s12633-023-02347-0
  23. I. Dinaharan, T. Albert, Mater. Today Commun. 34, 105250 (2023). https://doi.org/10.1016/j.mtcomm.2022.105250
  24. A. M. Ibraheem, S. M. A. Allah, S. Y. Darweesh, J. Phys.: Conf. Ser. 1999(1), 012074 (2021). https://doi.org/10.1088/1742-6596/1999/1/012074
  25. F. Ternero, L. G. Rosa, P. Urban, J. M. Montes, F. G. Cuevas, Metals 11(5), 730 (2021). https://doi.org/10.3390/met11050730
  26. S. Y. Darweesh, R. A. Rasheed, M. A. Abdullah, J. Fail. Anal. Prev. 23(6), 2461 (2023). https://doi.org/10.1007/s11668-023-01788-4
  27. X. Zhang, K. Zhang, J. Dang, L. Tu, Q. Wang, W. Ming, M. Chen, Wear 205429 (2024). https://doi.org/10.1016/j.wear.2024.205429
  28. C. Wang, W. Li, Y. Xu, X. Luo, Z. Li, W. Li, C. Huang, Surf. Coat. Technol. 493, 131252 (2024). https://doi.org/10.1016/j.surfcoat.2024.131252
  29. S. Y. Darweesh, A. H. Jassim, A. O. Taha, AIP Conf. Proc. 2977(1), (2023). https://doi.org/10.1063/5.0182255
  30. S. Y. Darweesh, A. M. Ali, Z. T. Khodair, Z. N. Majeed, J. Fail. Anal. Prev. 19, 1726 (2019). https://doi.org/10.1007/s11668-019-00772-1
  31. Z. Wang, Y. Tan, N. Li, J. Alloys Compd. 965, 171030 (2023). https://doi.org/10.1016/j.jallcom.2023.171030
  32. L. Bolzoni, F. Yang, M. Paul, J. Mater. Res. Technol. 24, 2678 (2023). https://doi.org/10.1016/j.jmrt.2023.03.178
  33. P. R. Rajkumar, C. Kailasanathan, A. Senthilkumar, N. Selvakumar, A. JohnRajan, Mater. Res. Express 7(1), 016597 (2020). https://doi.org/10.1088/2053-1591/ab6c0b
  34. V. G. Maksimov, N. M. Varrik, V. G. Babashov, Refract. Ind. Ceram., 1 (2024). https://doi.org/10.1007/s11148-024-00884-8
  35. S. Parvizi, S. M. Hashemi, F. Asgarinia, M. Nematollahi, M. Elahinia, Prog. Mater. Sci. 117, 100739 (2021). https://doi.org/10.1016/j.pmatsci.2020.100739
  36. N. A. Jaya, L. Yun-Ming, H. Cheng-Yong, M. M. A. B. Abdullah, K. Hussin, Constr. Build. Mater. 247, 118641 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118641
  37. N. Karthikeyan, B. R. Krishnan, A. VembathuRajesh, V. Vijayan, Mater. Today: Proc. 37, 2770 (2021). https://doi.org/10.1016/j.matpr.2020.08.643
  38. S. Kanthasamy, T. S. Ravikumar, Aust. J. Mech. Eng. 22(4), 652 (2024). https://doi.org/10.1080/14484846.2022.2136043
  39. Z. Nie, H. Lu, Q. Liu, G. Chai, Y. Ding, G. Xu, J. Guo, Surf. Coat. Technol. 479, 130520 (2024). https://doi.org/10.1016/j.surfcoat.2024.130520
  40. W. Xu, M. Chen, X. Lu, D. W. Zhang, H. P. Singh, Y. Jian-shu, C. Z. Liu, Corros. Sci. 168, 108557 (2020). https://doi.org/10.1016/j.corsci.2020.108557
  41. G. Rodríguez-Cabriales, C. G. Garay-Reyes, J. C. Guía-Tello, H. M. Medrano-Prieto, I. Estrada-Guel, L. J. García-Hernández, R. Martínez-Sánchez, Lubricants 11(3), 103 (2023). https://doi.org/10.3390/lubricants11030103
  42. E. Salur, A. Aslan, M. Kuntoğlu, M. Acarer, Adv. Powder Technol. 32(10), 3826 (2021). https://doi.org/10.1016/j.apt.2021.08.031
  43. X. Yuan, X. Qu, H. Yin, Z. Feng, M. Tang, Z. Yan, Z. Tan, Metals 11(2), 218 (2021). https://doi.org/10.3390/met11020218
  44. W. S. AbuShanab, E. B. Moustafa, E. Ghandourah, M. A. Taha, Results Phys. 19, 103343 (2020). https://doi.org/10.1016/j.rinp.2020.103343
  45. H. İ. Yavuz, B. Eyri, R. Yamanoğlu, E. Feyzullahoğlu, Proc. Inst. Mech. Eng. J: J. Eng. Tribol. 237(2), 288 (2023). https://doi.org/10.1177/13506501221109042
  46. E. M. Karakurt, Y. Huang, M. Kaya, H. Demirtas, A. Acikgoz, G. Demircan, Arab. J. Sci. Eng. 49(2), 1479 (2024). https://doi.org/10.1007/s13369-023-07889-4
  47. S. Sun, N. Deng, H. Zhang, L. He, H. Zhou, B. Han, X. Wang, J. Mater. Res. Technol. 15, 1789 (2021). https://doi.org/10.1016/j.jmrt.2021.09.015
  48. S. Raynova, F. Yang, L. Bolzoni, Mater. Sci. Eng. A 799, 140157 (2021). https://doi.org/10.1016/j.msea.2020.140157
  49. L. E. Mathias, V. E. Pinotti, B. F. Batistão, N. Rojas-Arias, G. Figueira, A. F. Andreoli, P. Gargarella, J. Mater. Res. 39(1), 19 (2024). https://doi.org/10.1557/s43578-023-01271-8
  50. K. Arkusz, K. Pasik, M. Nowak, M. Jurczyk, Materials 17(7), 1473 (2024). https://doi.org/10.3390/ma17071473
  51. M. S. Hamoudi, A. S. Mahmoud, S. Y. Darweesh, AIP Conf. Proc. 2885(1), (2024). https://doi.org/10.1063/5.0182025
  52. S. H. Humeedi, N. A. Shafeek, H. H. Ahmeed, S. Y. Darweesh, J. Phys.: Conf. Ser. 1664(1), 012078 (2020). https://doi.org/10.1088/1742-6596/1664/1/012078