10.57647/j.jtap.2025.1905.46

Cost effective copper oxide thin layers by highly controlled spray pyrolysis method for optoelectronic devices

  1. LPCMME Lab, Faculty of Exacte and applied Sciences, University Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria
  2. Faculty of Exacte Sciences, Mustapha Stambouli Mascara University, 29000 Mascara, Algeria
  3. Center for Renewable Energy System and Recycling, R&D Institute of the Transilvania University of Brasov, Eroilor 29 Street, 500036, Brasov, Romania

Received: 2025-06-02

Revised: 2025-08-14

Accepted: 2025-08-26

Published in Issue 2025-09-30

How to Cite

1.
Hamdaoui NR, Eddine BS, Hammoudi Y, Barkat L, Khelil A, Auricia CB, et al. Cost effective copper oxide thin layers by highly controlled spray pyrolysis method for optoelectronic devices. J Theor Appl phys. 2025 Sep. 30;19(5). Available from: https://oiccpress.com/jtap/article/view/17676

PDF views: 4

Abstract

Copper Oxide (CuO) thin films were deposited via spray pyrolysis, and the effect of precursor concentration on their structural, morphological, optical, and electrical properties was systematically investigated. X-ray diffraction confirmed a monoclinic crystal structure with optimal crystallinity at 0.06 M, yielding a crystallite size of 25.27 nm. SEM and AFM analyses revealed improved surface uniformity, larger grains, and reduced defects at this concentration. The optimized films exhibited 63% average transmittance in the visible range and an optical bandgap between 1.53 and 2.10 eV. These results demonstrate that cost-effective CuO thin films can achieve properties comparable to those of metal oxides produced by more expensive techniques, positioning them as promising candidates for optoelectronic and photovoltaic applications.

Keywords

  • CuO,
  • Spray pyrolysis,
  • XRD,
  • Optoelectronic,
  • Figure of merit

References

  1. T. Baran, A. Visibile, M. Busch, X. He, S. Wojtyla, S. Rondinini, A. Minguzzi, A. Vertova, Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances, Molecules 26 (2021) 7271. https://doi.org/10.3390/molecules26237271.
  2. S. Naz, A. Gul, M. Zia, R. Javed, Synthesis, biomedical applications, and toxicity of CuO nanoparticles, Appl Microbiol Biotechnol 107 (2023) 1039–1061. https://doi.org/10.1007/s00253-023-12364-z.
  3. W.-J. Lee, X.-J. Wang, Structural, Optical, and Electrical Properties of Copper Oxide Films Grown by the SILAR Method with Post-Annealing, Coatings 11 (2021) 864. https://doi.org/10.3390/coatings11070864.
  4. Y. Alajlani, F. Placido, H.O. Chu, R. De Bold, L. Fleming, D. Gibson, Characterisation of Cu2O/CuO thin films produced by plasma-assisted DC sputtering for solar cell application, Thin Solid Films 642 (2017) 45–50. https://doi.org/10.1016/j.tsf.2017.09.023.
  5. V.-H. Castrejón-Sánchez, A.C. Solís, R. López, C. Encarnación-Gomez, F.M. Morales, O.S. Vargas, J.E. Mastache-Mastache, G.V. Sánchez, Thermal oxidation of copper over a broad temperature range: towards the formation of cupric oxide (CuO), Mater. Res. Express 6 (2019) 075909. https://doi.org/10.1088/2053-1591/ab1662.
  6. J. Lillo-Ramiro, J.M. Guerrero-Villalba, M. de L. Mota-González, F.S.A.- Tostado, G. Gutiérrez-Heredia, I. Mejía-Silva, A.C.- Castillo, Optical and microstructural characteristics of CuO thin films by sol gel process and introducing in non-enzymatic glucose biosensor applications, Optik 229 (2021) 166238. https://doi.org/10.1016/j.ijleo.2020.166238.
  7. M.F. Al-Kuhaili, Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O), Vacuum 82 (2008) 623–629. https://doi.org/10.1016/j.vacuum.2007.10.004.
  8. N.M. Rosas-Laverde, A.I. Pruna, J. Cembrero, D. Busquets-Mataix, Electrodeposition of ZnO/Cu2O Heterojunctions on Ni-Mo-P Electroless Coating, Coatings 10 (2020) 935. https://doi.org/10.3390/coatings10100935.
  9. D. Naveena, T. Logu, R. Dhanabal, K. Sethuraman, A.C. Bose, Comparative study of effective photoabsorber CuO thin films prepared via different precursors using chemical spray pyrolysis for solar cell application, J Mater Sci: Mater Electron 30 (2019) 561–572. https://doi.org/10.1007/s10854-018-0322-4.
  10. S.E. Boussaada, Y. Mouchaal, H. Riane, A. Khelil, An investigation of structural, electrical and optical properties of metal free-Zinc Oxide Thin Films Using Spray Pyrolysis Sol-Gel Techniques, Egyptian Journal of Chemistry (2024). https://doi.org/10.21608/ejchem.2024.266541.9265.
  11. A. Rydosz, K. Dyndał, W. Andrysiewicz, D. Grochala, K. Marszałek, GLAD Magnetron Sputtered Ultra-Thin Copper Oxide Films for Gas-Sensing Application, Coatings 10 (2020) 378. https://doi.org/10.3390/coatings10040378.
  12. R.M. Pasquarelli, D.S. Ginley, R. O’Hayre, Solution processing of transparent conductors: from flask to film, Chem. Soc. Rev. 40 (2011) 5406–5441. https://doi.org/10.1039/C1CS15065K.
  13. A. Rydosz, The Use of Copper Oxide Thin Films in Gas-Sensing Applications, Coatings 8 (2018) 425. https://doi.org/10.3390/coatings8120425.
  14. M.R. Johan, M.S.M. Suan, N.L. Hawari, H.A. Ching, Annealing Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition, International Journal of Electrochemical Science 6 (2011) 6094–6104. https://doi.org/10.1016/S1452-3981(23)19665-9.
  15. H. Siddiqui, M.R. Parra, F.Z. Haque, Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol−gel technique, J Sol-Gel Sci Technol 87 (2018) 125–135. https://doi.org/10.1007/s10971-018-4663-5.
  16. D. Prasanth, K.P. Sibin, H.C. Barshilia, Optical properties of sputter deposited nanocrystalline CuO thin films, Thin Solid Films 673 (2019) 78–85. https://doi.org/10.1016/j.tsf.2019.01.037.
  17. A. Rohini Devi, A. Jegatha Christy, K. Deva Arun Kumar, S. Valanarasu, M.S. Hamdy, K.S. Al-Namshah, A.M. Alhanash, D. Vikraman, H.-S. Kim, Physical properties evaluation of nebulized spray pyrolysis prepared Nd doped ZnO thin films for opto-electronic applications, J Mater Sci: Mater Electron 30 (2019) 7257–7267. https://doi.org/10.1007/s10854-019-01039-z.
  18. A. Umar, A.A. Alshahrani, H. Algarni, R. Kumar, CuO nanosheets as potential scaffolds for gas sensing applications, Sensors and Actuators B: Chemical 250 (2017) 24–31. https://doi.org/10.1016/j.snb.2017.04.062.
  19. G.M. Raghavendra, J. Jung, D. Kim, J. Seo, Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties, Carbohydrate Polymers 172 (2017) 78–84. https://doi.org/10.1016/j.carbpol.2017.04.070.
  20. K. Chen, D. Xue, Room-Temperature Chemical Transformation Route to CuO Nanowires toward High-Performance Electrode Materials, J. Phys. Chem. C 117 (2013) 22576–22583. https://doi.org/10.1021/jp4081756.
  21. P. Venkateswari, P. Thirunavukkarasu, M. Ramamurthy, M. Balaji, J. Chandrasekaran, Optimization and characterization of CuO thin films for P–N junction diode application by JNSP technique, Optik 140 (2017) 476–484. https://doi.org/10.1016/j.ijleo.2017.04.039.
  22. L. Xu, F. Xian, W. Kuang, Growth of high quality CuO thin film and investigation of its abnormal luminescence behavior, Physica B: Condensed Matter 673 (2024) 415505. https://doi.org/10.1016/j.physb.2023.415505.
  23. A. Moumen, G.C.W. Kumarage, E. Comini, P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications, Sensors 22 (2022) 1359. https://doi.org/10.3390/s22041359.
  24. R. Rahaman, Structural, morphological, and opto-electrical characterization of Mn and Co doped CuO thin films, (2019). http://lib.buet.ac.bd:8080/xmlui/handle/123456789/5539 (accessed April 24, 2025).
  25. H. Serrar, A. Bouabellou, Y. Bouachiba, A. Taabouche, A. Bouhank, Y. Bellal, H. Merabti, Effect of water and methanol solvents on the properties of CuO thin films deposited by spray pyrolysis, Thin Solid Films 686 (2019) 137282. https://doi.org/10.1016/j.tsf.2019.05.001.
  26. R. Zhang, M. Hummelgård, H. Olin, A facile one-step method for synthesising a parallelogram-shaped single-crystalline ZnO nanosheet, Materials Science and Engineering: B 184 (2014) 1–6. https://doi.org/10.1016/j.mseb.2013.12.009.
  27. S.M. Mariappan, M. Shkir, T. Alshahrani, V. Elangovan, H. Algarni, S. AlFaify, Insight on the optoelectronics and enhanced dielectric properties of strontium decorated PbI2 nanosheets for hot carrier solar cell applications, Journal of Alloys and Compounds 859 (2021) 157762. https://doi.org/10.1016/j.jallcom.2020.157762.
  28. M. Shkir, K.V. Chandekar, A. Khan, T. Alshahrani, A. Mohamed El-Toni, M.A. Sayed, A.K. Singh, A.A. Ansari, M.R. Muthumareeswaran, A. Aldalbahi, R.K. Gupta, S. AlFaify, Tailoring the structure-morphology-vibrational-optical-dielectric and electrical characteristics of Ce@NiO NPs produced by facile combustion route for optoelectronics, Materials Science in Semiconductor Processing 126 (2021) 105647. https://doi.org/10.1016/j.mssp.2020.105647.
  29. Y.-T. Sul, C.B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, T. Albrektsson, Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown:: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition, Biomaterials 23 (2002) 491–501. https://doi.org/10.1016/S0142-9612(01)00131-4.
  30. M.K. Hossain, D.P. Samajdar, R.C. Das, A.A. Arnab, Md.F. Rahman, M.H.K. Rubel, Md.R. Islam, H. Bencherif, R. Pandey, J. Madan, M.K.A. Mohammed, Design and Simulation of Cs2BiAgI6 Double Perovskite Solar Cells with Different Electron Transport Layers for Efficiency Enhancement, Energy Fuels 37 (2023) 3957–3979. https://doi.org/10.1021/acs.energyfuels.3c00181.
  31. G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics 47 (2008) 4086–4089. https://doi.org/10.1063/1.323240.
  32. W.Q. Li, S.Y. Ma, Y.F. Li, X.B. Li, C.Y. Wang, X.H. Yang, L. Cheng, Y.Z. Mao, J. Luo, D.J. Gengzang, G.X. Wan, X.L. Xu, Preparation of Pr-doped SnO2 hollow nanofibers by electrospinning method and their gas sensing properties, Journal of Alloys and Compounds 605 (2014) 80–88. https://doi.org/10.1016/j.jallcom.2014.03.182.
  33. S. Maheswari, M. Karunakaran, K. Hariprasad, K. Kasirajan, I.L. Poul Raj, L.B. Chandrasekar, T. Alshahrani, M. Shkir, S. AIFaify, Noticeable enhancement in NH3 sensing performance of nebulizer spray pyrolysis deposited SnO2 thin films: An effect of Tb doping, Superlattices and Microstructures 154 (2021) 106868. https://doi.org/10.1016/j.spmi.2021.106868.