Cost effective copper oxide thin layers by highly controlled spray pyrolysis method for optoelectronic devices
- LPCMME Lab, Faculty of Exacte and applied Sciences, University Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria
- Faculty of Exacte Sciences, Mustapha Stambouli Mascara University, 29000 Mascara, Algeria
- Center for Renewable Energy System and Recycling, R&D Institute of the Transilvania University of Brasov, Eroilor 29 Street, 500036, Brasov, Romania
Received: 2025-06-02
Revised: 2025-08-14
Accepted: 2025-08-26
Published in Issue 2025-09-30
Copyright (c) 2025 Nardjes Randa Hamdaoui, Boussaada Salah Eddine, Younes Hammoudi, Lamia Barkat, Abdelbacet Khelil, Cristina Bogatu Auricia, Dana Perniu, Anca Duta, Younes Mouchaal (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 4
Abstract
Copper Oxide (CuO) thin films were deposited via spray pyrolysis, and the effect of precursor concentration on their structural, morphological, optical, and electrical properties was systematically investigated. X-ray diffraction confirmed a monoclinic crystal structure with optimal crystallinity at 0.06 M, yielding a crystallite size of 25.27 nm. SEM and AFM analyses revealed improved surface uniformity, larger grains, and reduced defects at this concentration. The optimized films exhibited 63% average transmittance in the visible range and an optical bandgap between 1.53 and 2.10 eV. These results demonstrate that cost-effective CuO thin films can achieve properties comparable to those of metal oxides produced by more expensive techniques, positioning them as promising candidates for optoelectronic and photovoltaic applications.
Keywords
- CuO,
- Spray pyrolysis,
- XRD,
- Optoelectronic,
- Figure of merit
References
- T. Baran, A. Visibile, M. Busch, X. He, S. Wojtyla, S. Rondinini, A. Minguzzi, A. Vertova, Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances, Molecules 26 (2021) 7271. https://doi.org/10.3390/molecules26237271.
- S. Naz, A. Gul, M. Zia, R. Javed, Synthesis, biomedical applications, and toxicity of CuO nanoparticles, Appl Microbiol Biotechnol 107 (2023) 1039–1061. https://doi.org/10.1007/s00253-023-12364-z.
- W.-J. Lee, X.-J. Wang, Structural, Optical, and Electrical Properties of Copper Oxide Films Grown by the SILAR Method with Post-Annealing, Coatings 11 (2021) 864. https://doi.org/10.3390/coatings11070864.
- Y. Alajlani, F. Placido, H.O. Chu, R. De Bold, L. Fleming, D. Gibson, Characterisation of Cu2O/CuO thin films produced by plasma-assisted DC sputtering for solar cell application, Thin Solid Films 642 (2017) 45–50. https://doi.org/10.1016/j.tsf.2017.09.023.
- V.-H. Castrejón-Sánchez, A.C. Solís, R. López, C. Encarnación-Gomez, F.M. Morales, O.S. Vargas, J.E. Mastache-Mastache, G.V. Sánchez, Thermal oxidation of copper over a broad temperature range: towards the formation of cupric oxide (CuO), Mater. Res. Express 6 (2019) 075909. https://doi.org/10.1088/2053-1591/ab1662.
- J. Lillo-Ramiro, J.M. Guerrero-Villalba, M. de L. Mota-González, F.S.A.- Tostado, G. Gutiérrez-Heredia, I. Mejía-Silva, A.C.- Castillo, Optical and microstructural characteristics of CuO thin films by sol gel process and introducing in non-enzymatic glucose biosensor applications, Optik 229 (2021) 166238. https://doi.org/10.1016/j.ijleo.2020.166238.
- M.F. Al-Kuhaili, Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O), Vacuum 82 (2008) 623–629. https://doi.org/10.1016/j.vacuum.2007.10.004.
- N.M. Rosas-Laverde, A.I. Pruna, J. Cembrero, D. Busquets-Mataix, Electrodeposition of ZnO/Cu2O Heterojunctions on Ni-Mo-P Electroless Coating, Coatings 10 (2020) 935. https://doi.org/10.3390/coatings10100935.
- D. Naveena, T. Logu, R. Dhanabal, K. Sethuraman, A.C. Bose, Comparative study of effective photoabsorber CuO thin films prepared via different precursors using chemical spray pyrolysis for solar cell application, J Mater Sci: Mater Electron 30 (2019) 561–572. https://doi.org/10.1007/s10854-018-0322-4.
- S.E. Boussaada, Y. Mouchaal, H. Riane, A. Khelil, An investigation of structural, electrical and optical properties of metal free-Zinc Oxide Thin Films Using Spray Pyrolysis Sol-Gel Techniques, Egyptian Journal of Chemistry (2024). https://doi.org/10.21608/ejchem.2024.266541.9265.
- A. Rydosz, K. Dyndał, W. Andrysiewicz, D. Grochala, K. Marszałek, GLAD Magnetron Sputtered Ultra-Thin Copper Oxide Films for Gas-Sensing Application, Coatings 10 (2020) 378. https://doi.org/10.3390/coatings10040378.
- R.M. Pasquarelli, D.S. Ginley, R. O’Hayre, Solution processing of transparent conductors: from flask to film, Chem. Soc. Rev. 40 (2011) 5406–5441. https://doi.org/10.1039/C1CS15065K.
- A. Rydosz, The Use of Copper Oxide Thin Films in Gas-Sensing Applications, Coatings 8 (2018) 425. https://doi.org/10.3390/coatings8120425.
- M.R. Johan, M.S.M. Suan, N.L. Hawari, H.A. Ching, Annealing Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition, International Journal of Electrochemical Science 6 (2011) 6094–6104. https://doi.org/10.1016/S1452-3981(23)19665-9.
- H. Siddiqui, M.R. Parra, F.Z. Haque, Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol−gel technique, J Sol-Gel Sci Technol 87 (2018) 125–135. https://doi.org/10.1007/s10971-018-4663-5.
- D. Prasanth, K.P. Sibin, H.C. Barshilia, Optical properties of sputter deposited nanocrystalline CuO thin films, Thin Solid Films 673 (2019) 78–85. https://doi.org/10.1016/j.tsf.2019.01.037.
- A. Rohini Devi, A. Jegatha Christy, K. Deva Arun Kumar, S. Valanarasu, M.S. Hamdy, K.S. Al-Namshah, A.M. Alhanash, D. Vikraman, H.-S. Kim, Physical properties evaluation of nebulized spray pyrolysis prepared Nd doped ZnO thin films for opto-electronic applications, J Mater Sci: Mater Electron 30 (2019) 7257–7267. https://doi.org/10.1007/s10854-019-01039-z.
- A. Umar, A.A. Alshahrani, H. Algarni, R. Kumar, CuO nanosheets as potential scaffolds for gas sensing applications, Sensors and Actuators B: Chemical 250 (2017) 24–31. https://doi.org/10.1016/j.snb.2017.04.062.
- G.M. Raghavendra, J. Jung, D. Kim, J. Seo, Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties, Carbohydrate Polymers 172 (2017) 78–84. https://doi.org/10.1016/j.carbpol.2017.04.070.
- K. Chen, D. Xue, Room-Temperature Chemical Transformation Route to CuO Nanowires toward High-Performance Electrode Materials, J. Phys. Chem. C 117 (2013) 22576–22583. https://doi.org/10.1021/jp4081756.
- P. Venkateswari, P. Thirunavukkarasu, M. Ramamurthy, M. Balaji, J. Chandrasekaran, Optimization and characterization of CuO thin films for P–N junction diode application by JNSP technique, Optik 140 (2017) 476–484. https://doi.org/10.1016/j.ijleo.2017.04.039.
- L. Xu, F. Xian, W. Kuang, Growth of high quality CuO thin film and investigation of its abnormal luminescence behavior, Physica B: Condensed Matter 673 (2024) 415505. https://doi.org/10.1016/j.physb.2023.415505.
- A. Moumen, G.C.W. Kumarage, E. Comini, P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications, Sensors 22 (2022) 1359. https://doi.org/10.3390/s22041359.
- R. Rahaman, Structural, morphological, and opto-electrical characterization of Mn and Co doped CuO thin films, (2019). http://lib.buet.ac.bd:8080/xmlui/handle/123456789/5539 (accessed April 24, 2025).
- H. Serrar, A. Bouabellou, Y. Bouachiba, A. Taabouche, A. Bouhank, Y. Bellal, H. Merabti, Effect of water and methanol solvents on the properties of CuO thin films deposited by spray pyrolysis, Thin Solid Films 686 (2019) 137282. https://doi.org/10.1016/j.tsf.2019.05.001.
- R. Zhang, M. Hummelgård, H. Olin, A facile one-step method for synthesising a parallelogram-shaped single-crystalline ZnO nanosheet, Materials Science and Engineering: B 184 (2014) 1–6. https://doi.org/10.1016/j.mseb.2013.12.009.
- S.M. Mariappan, M. Shkir, T. Alshahrani, V. Elangovan, H. Algarni, S. AlFaify, Insight on the optoelectronics and enhanced dielectric properties of strontium decorated PbI2 nanosheets for hot carrier solar cell applications, Journal of Alloys and Compounds 859 (2021) 157762. https://doi.org/10.1016/j.jallcom.2020.157762.
- M. Shkir, K.V. Chandekar, A. Khan, T. Alshahrani, A. Mohamed El-Toni, M.A. Sayed, A.K. Singh, A.A. Ansari, M.R. Muthumareeswaran, A. Aldalbahi, R.K. Gupta, S. AlFaify, Tailoring the structure-morphology-vibrational-optical-dielectric and electrical characteristics of Ce@NiO NPs produced by facile combustion route for optoelectronics, Materials Science in Semiconductor Processing 126 (2021) 105647. https://doi.org/10.1016/j.mssp.2020.105647.
- Y.-T. Sul, C.B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, T. Albrektsson, Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown:: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition, Biomaterials 23 (2002) 491–501. https://doi.org/10.1016/S0142-9612(01)00131-4.
- M.K. Hossain, D.P. Samajdar, R.C. Das, A.A. Arnab, Md.F. Rahman, M.H.K. Rubel, Md.R. Islam, H. Bencherif, R. Pandey, J. Madan, M.K.A. Mohammed, Design and Simulation of Cs2BiAgI6 Double Perovskite Solar Cells with Different Electron Transport Layers for Efficiency Enhancement, Energy Fuels 37 (2023) 3957–3979. https://doi.org/10.1021/acs.energyfuels.3c00181.
- G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics 47 (2008) 4086–4089. https://doi.org/10.1063/1.323240.
- W.Q. Li, S.Y. Ma, Y.F. Li, X.B. Li, C.Y. Wang, X.H. Yang, L. Cheng, Y.Z. Mao, J. Luo, D.J. Gengzang, G.X. Wan, X.L. Xu, Preparation of Pr-doped SnO2 hollow nanofibers by electrospinning method and their gas sensing properties, Journal of Alloys and Compounds 605 (2014) 80–88. https://doi.org/10.1016/j.jallcom.2014.03.182.
- S. Maheswari, M. Karunakaran, K. Hariprasad, K. Kasirajan, I.L. Poul Raj, L.B. Chandrasekar, T. Alshahrani, M. Shkir, S. AIFaify, Noticeable enhancement in NH3 sensing performance of nebulizer spray pyrolysis deposited SnO2 thin films: An effect of Tb doping, Superlattices and Microstructures 154 (2021) 106868. https://doi.org/10.1016/j.spmi.2021.106868.
10.57647/j.jtap.2025.1905.46
