10.57647/j.jtap.2025.1905.48

Investigation of D-Glutamine dimer: Characterization of N—H· · · O bond using experimental - IR, Raman, UV-Vis, ECD spectroscopy techniques, supported by computational - MD, DFT, NBO, AIM, NCI methods

  1. Vibrational Spectroscopy Group/Molecular Modelling Laboratory, Department of Physics, Karnatak University, Dharwad, India

Received: 2025-05-19

Revised: 2025-08-28

Accepted: 2025-09-04

Published in Issue 2025-09-30

How to Cite

1.
Kotyagol M, Tonannavar J, Tonannavar JR. Investigation of D-Glutamine dimer: Characterization of N—H· · · O bond using experimental - IR, Raman, UV-Vis, ECD spectroscopy techniques, supported by computational - MD, DFT, NBO, AIM, NCI methods. J Theor Appl phys. 2025 Sep. 30;19(5). Available from: https://oiccpress.com/jtap/article/view/17673

PDF views: 1

Abstract

The zwitterionic inter- molecular N─H⋅⋅⋅O bonded dimer structure was proposed for D-Glutamine. The identification of inter- molecular N─H⋅⋅⋅O bond was aided by reported XRD and IR absorption spectral features. We obtained inter- molecular N─H⋅⋅⋅O bonded dimer, trimer, and tetramer species during molecular dynamics simulation. We selected the dimers with the longest maximum residence time for DFT calculations and labeled them as D-I, D-II, D-III, and D-IV for our reference. We determined the H-bond correlation for these dimers at the B3LYP/6-31G(d,p) level. D-I has the shortest H⋅⋅⋅O distance, a greater change in N─H bond length between bonded and free bond length, a larger decrease in N─H stretching frequencies when it's bonded, higher stabilization energy from NBO analysis, and more H-bond interaction energy from AIM analysis. Therefore, D-I was selected for further detailed study. D-I satisfactorily with the reported XRD structure of D-Glutamine. D-I aligns well with the experimental IR and Raman spectral features. We studied excited electronic transitions using UV-Visible and Electronic Circular Dichroism spectral measurements. D-I was further electronically characterized using NBO, MEP, HOMO-LUMO, AIM, and NCI analysis. With all these characterizations, the D-I was in excellent agreement with the experimental spectral measurements.

Keywords

  • D-Glutamine,
  • Molecular Dynamics simulation,
  • Density Functional Theory,
  • N─H⋅⋅⋅O bond,
  • ECD spectrum

References

  1. Q. Du, X. Zhang, X. Pan, H. Zhang, Y.S. Yang, J. Liu, Q. Jiao. “A novel strategy for efficient chemoenzymatic synthesis of D-Glutamine using recombinant Escherichia coli cells.”. J Mol Struct, 1219, 2020.DOI: https://doi.org/10.1016/j.molstruc.2020.128600
  2. M.Z. Abidin, T. Saravanan, E. Strauss, G.J. Poelarends. “The broad amine scope of pantothenate synthetase enables the synthesis of pharmaceutically relevant amides.”. Org Biomol Chem, 19, 4515–4519, 2021.DOI: https://doi.org/10.1039/d1ob00238d
  3. W. Coohran and Bruce R. Penfold. “The Crystal Structure of L-Glutamine.”. Acta Cryst, 5, 644–653, 1952.DOI: https://doi.org/10.1107/S0365110X52001775
  4. T.F. Koetzle, M.N. Frey, M.S. Lehmann, W.C.H. Ii. “Precision neutron diffraction structure determination of protein and nucleic acid components. XIII. Molecular and crystal structure of the amino acid L-glutamine.”. Acta Crystallographica Section B, 1973.DOI: https://doi.org/10.1107/S0567740873007028
  5. A. Pawlukojc, K. Hołderna-Natkaniec, G. Bator, I. Natkaniec. “L-Glutamine: Dynamical properties investigation by means of INS, IR, Raman, 1H NMR and DFT techniques.”. Chem Phys, 443, 17–25, 2014.DOI: https://doi.org/10.1016/j.chemphys.2014.08.003
  6. N.H. Rhys, A.K. Soper, L. Dougan. “The hydrogen-bonding ability of the amino acid Glutamine revealed by neutron diffraction experiments.”. Journal of Physical Chemistry B, 116 13308–13319, 2012.DOI: https://doi.org/10.1021/jp307442f
  7. R. Ding, J. Ying, Y. Zhao. “An electronic circular dichroism spectroscopy method for the quantification of L- and D-amino acids in enantiomeric mixtures.”. R Soc Open Sci 8, 2021.DOI: https://doi.org/10.1098/rsos.201963
  8. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, R.L. Martin, V. Bakken, J.A. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT (2013).[9] R. Dennington, T. Keith, J. Millam, GaussView 5.0, Semichem Inc., 2009
  9. M.H. Jamroz, Vibrational energy distribution analysis (VEDA): scopes and limitations, Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 114 220–230, 2013.DOI: https://doi.org/10.1016/j.saa.2013.05.096
  10. Madhuri D. Prabhu, Jayashree Tonannavar, J. Tonannavar. “Multiple-H-bonded-zwitterionic tetramer structure for L-(+)-2-chlorophenylglycine, as investigated by UV, IR and Raman spectroscopy and electronic structure calculations.”. J Mol Struct, 1246, 2021.DOI: https://doi.org/10.1016/j.molstruc.2021.131218
  11. Shashikala Yalagi, Jagdish Tonannavar, Jayashree Tonannavar. “DL-3-Aminoisobutyric acid: vibrational, NBO and AIM analysis of N–H⋯O bonded-zwitterionic dimer model.”. Heliyon, 5 2019.DOI: https://doi.org/10.1016/j.heliyon.2019.e01933
  12. Aleksandr V. Marenich, Christopher J. Cramer, Donald G. Truhlar. “Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions.”. The Journal of Physical Chemistry B, 113, 2009.DOI: https://doi.org/10.1021/jp810292n
  13. M.J. Abraham, D. van der Spoel, E. Lindahl, B. Hess, and the GROMACS development team, GROMACS User Manual version, 2019.http://www.gromacs.org
  14. H.J.C. Berendsen, D. van der Spoel, R. van Drunen. “GROMACS: A message-passing parallel molecular dynamics implementation.”. Comput Phys Commun 91, 1995. DOI: https://doi.org/10.1016/0010-4655(95)00042-E
  15. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, “GROMACS: Fast, flexible, and free.”. J Comput Chem, 26 1701–1718, 2005.DOI: https://doi.org/10.1002/jcc.20291
  16. Pall Szilard, Mark James Abraham, Carsten Kutzner, Berk Hess, Erik Lindahl. “Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS.”. Computer Science. 2015.https://doi.org/10.1007/978-3-319-15976-8_1
  17. L. Pallavi, J. Tonannavar, Jayashree Tonannavar. “Molecular dynamics simulation, DFT calculations and vibrational spectroscopic study of N-H⋅⋅⋅O bound dimer models for DL-β-phenylalanine and 3-amino-3-(4-chlorophenyl)propionic acid.”. J Mol Liq, 352, 2022.DOI: https://doi.org/10.1016/j.molliq.2022.118746
  18. Ramanna P. Kavali, Jayashree Tonannavar, Jyoti Bhovi, J. Tonannavar. “Study of O–H⋅⋅⋅O bonded-cyclic dimer for 2,5-Dihydroxyterephthalic acid as aided by MD, DFT calculations and IR, Raman, NMR spectroscopy.”. J Mol Struct, 1264, 2022.DOI: https://doi.org/10.1016/j.molstruc.2022.133174
  19. Berk Hess, Henk Bekker, Herman J. C. Berendsen, Johannes G. E. M. Fraaije. “LINCS: A Linear Constraint Solver for Molecular Simulations.”. J Comp Chem, 1997.DOI: https://doi.org/10.1002/(SICI)1096-987X(199709)
  20. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen. “A smooth particle mesh Ewald method.”. J Chem Phys, 103, 8577–8593, 1995.DOI: https://doi.org/10.1063/1.470117
  21. P.N. Patrone, T.W. Rosch. “Beyond histograms: efficiently estimating radial distribution functions via spectral Monte Carlo.”. J Chem Phys, 2017.DOI: 10.1063/1.4977516
  22. C.J. Cramer, Essential of computational chemistry book Theories and models, ISBN: 978-0-470-09182-1, 2004
  23. Annamalai Subhasri, Subramanian Balachandran, Kumar Mohanraj, Ponnusamy Senthil Kumar, Kumaravel Jeeva Jothi, Chinnadurai Anbuselvan. “Synthesis, Computational and Cytotoxicity Studies of Aryl Hydrazones of β-Diketones: Selective Ni²⁺ Metal Responsive Fluorescent Chemosensors.” Chemosphere, 297, 134150, 2022.DOI: https://doi.org/10.1016/j.chemosphere.2022.134150
  24. Timothy Hodson. “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not, Geoscientific Model Development.”. 2022.DOI: 10.5194/gmd-15-5481-2022
  25. E. Rudberg, E.H. Rubensson, P. Sałek. “Hartree-Fock calculations with linearly scaling memory usage.”. J Chem Phy, 128, 2008.DOI: https://doi.org/10.1063/1.2918357
  26. G.R. Desiraju. “Weak hydrogen bonds in crystal engineering.”. Chem Comm, 2005.DOI: https://doi.org/10.1039/B504372G
  27. N. B. Colthup, L. H. Daly, and S. E. Wiberley, W. Liptay. “Book Review: Introduction to Infrared and Raman Spectroscopy.”. Chemie International Edition in English 4, 1965.DOI: https://doi.org/10.1002/anie.196507241
  28. H.W. Thompson, L.J. Bellamy, “The infra-red spectra of complex molecules.”. Spectrochimica Acta 7, (1955).DOI: https://doi.org/10.1016/0371-1951(55)80034-3
  29. G. Socrates. “Infrared and Raman characteristic group frequencies.”. Tables and charts, 2001
  30. D.A. Skoog, F.J. Holler, S.R. Crouch, Principles of Instrumental Analysis, 7th ed., Cengage Learning, 2016
  31. A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular Interactions from a Natural Bond Orbital, Donor—Acceptor Viewpoint, Chem Rev 88, 1988.DOI: https://doi.org/10.1021/cr00088a005
  32. E.D. Glendening, C.R. Landis, F. Weinhold. “Natural bond orbital methods.”. Wiley Interdiscip Rev Comput Mol Sci, 2, 1–42, 2012.DOI: https://doi.org/10.1002/wcms.51
  33. V. Krishnakumar, D. Barathi, R. Mathammal, J. Balamani, N. Jayamani. “Spectroscopic properties, NLO, HOMO-LUMO and NBO of maltol.”. Spectrochim Acta A Mol Biomol Spectrosc 121, 245–253, 2014.DOI: https://doi.org/10.1016/j.saa.2013.10.068
  34. Ramanna P, Jayashree Tonannavar, J. Tonannavar. “Study of H-bonded cyclic dimer of organic linker 5-Bromoisophthalic acid by DFT and vibrational spectroscopy.”. J Mol Struct 1241, 2021. DOI: https://doi.org/10.1016/j.molstruc.2021.130613
  35. Shashikala Yalagi, J. Tonannavar, Jayashree Yenagi. “Experimental and DFT dimer modeling studies of the H-bond induced-vibration modes of L-β-Homoserine.”. Spectrochim Acta A Mol Biomol Spectrosc, 181, 109–115, 2017.DOI: https://doi.org/10.1016/j.saa.2017.03.041
  36. Evgeniy Kvasyuk, Aliaksei Sysa, Sultan Al Saud, Siyamak Shahab, Masoome Sheikhi, Sadegh Kaviani, Anatoliy Zinchenko. “Quantum Chemical Modeling, Synthesis, Spectroscopic (FT-IR, Excited States, UV/Vis) Studies, FMO, QTAIM, ELF, LOL, NBO, NLO and QSAR Analyses of Nelarabine.”. Biointerface Research in Applied Chemistry, 13(2), 144, 2023.DOI: https://doi.org/10.33263/BRIAC132.144
  37. C.M. Breneman, K.B. Wiberg. “Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis.”. J Comp Chem, 11, 1990.DOI: https://doi.org/10.1002/jcc.540110311
  38. M. Saranya, S. Ayyappan, R. Nithya, R.K. Sangeetha, A. Gokila, “Molecular Structure, NBO And HOMO-LUMO Analysis of Quercetin on Single Layer Graphene by Density Functional Theory.”. Digest Journal of Nanomaterials and Biostructures, 13, 97-105, 2018
  39. N. Issaoui, H. Ghalla, S. Muthu, H.T. Flakus, B. Oujia. “Molecular structure, vibrational spectra, AIM, HOMO-LUMO, NBO, UV, first order hyperpolarizability, analysis of 3-thiophenecarboxylic acid monomer and dimer by Hartree-Fock and density functional theory.”. Spectrochim Acta A Mol Biomol Spectrosc, 136, 1227–1242, 2015.DOI: https://doi.org/10.1016/j.saa.2014.10.008
  40. N. Choudhary, S. Bee, A. Gupta, P. Tandon. “Comparative vibrational spectroscopic studies, HOMO-LUMO and NBO analysis of N-(phenyl)-2,2-dichloroacetamide, N-(2-chloro phenyl)-2,2-dichloroacetamide and N-(4-chloro phenyl)-2,2-dichloroacetamide based on density functional theory.”. Comput Theor Chem, 1016, 8–21, 2013.DOI: https://doi.org/10.1016/j.comptc.2013.04.008
  41. Madhuri D. Prabhu, J. Tonannavar (Yenagi), Vinayak Kamat, J. Tonannavar. “XRD structure and vibrational analysis of DL-β-Leucine, as aided by DFT tetramer model and characterized by NBO, AIM and NCI calculations.”. J Mol Struct, 1218, 2020.DOI: https://doi.org/10.1016/j.molstruc.2020.128495
  42. H. A. Almodarresiyeh, S. Shahab, S. Kaviani, Z. I. Kuvaeva, H. G. Karankevich, M. M. Markovich, V. A. Kaminskaya, L. Filippovich, M. Sheikhi. “Synthesis, DFT, Spectroscopic Studies and Electronic Properties of Novel Arginine Derivatives.”. Russian Journal of Physical Chemistry B, 17(1), 12–26, 2023.DOI: https://doi.org/10.1134/S1990793123010165
  43. Siyamak Shahab, Masoome Sheikhi, Maksim Khancheuski, Hooriye Yahyaei, Hora Alhosseini Almodarresiyeh, Sadegh Kaviani. “DFT, molecular docking and ADME prediction of tenofovir drug as a promising therapeutic inhibitor of SARS-CoV-2 Mpro.” Main Group Chemistry, 22, 115–128, 2023.DOI: https://doi.org/10.3233/MGC-220046
  44. R.F.W. Bader, A Quantum Theory of Molecular Structure and Its Applications, Chemical Reviews, 1991
  45. Shivanand S. Malaganvi, Jayashree Tonannavar (Yenagi), J. Tonannavar, “Experimental, DFT dimeric modeling and AIM study of H-bond-mediated composite vibrational structure of Chelidonic acid.”. Heliyon 5, 2019.DOI: https://doi.org/10.1016/j.heliyon.2019.e01586
  46. Shivanand S. Malaganvi, Jayashree Tonannavar (Yenagi), J. Tonannavar. “Spectroscopic and electronic structure characterization of H-bonding in 2-Bromohydroquinone.”. J Mol Struct 1181, 71–82, 2019.DOI: https://doi.org/10.1016/j.molstruc.2018.12.063
  47. P.L.A. Popelier. “Characterization of a Dihydrogen Bond on the Basis of the Electron Density.”. 1998
  48. E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang. “Revealing noncovalent interactions.”. J Am Chem Soc, 132, 6498–6506, 2010.DOI: https://doi.org/10.1021/ja100936w
  49. Jyoti Bhovi, J. Tonannavar, Jayashree Tonannavar. “IR, Raman spectroscopic, DFT, AIM and NCI characterization of O-H‧‧‧O/π‧‧‧π bonds in dimer and trimer species as computed from MD simulations in DOI: https://doi.org/10.1021/ja100936w.water for Protocatechuic acid.”. J Mol Struct, 1299, 2024.DOI: https://doi.org/10.1016/j.molstruc.2023.137077
  50. L. Pallavi, J. Tonannavar, Jayashree Tonannavar. “DFT zwitterion model for vibrational and electronic structure of unnatural 3-amino-3-(4-fluorophenyl)propionic acid, aided by IR and Raman DOI: https://doi.org/10.1016/j.molstruc.2020.128085. spectroscopy.”. J Mol Struct, 1211, 2020