Two dimensional plasmonic and all dielectric metasurface for Laser induced fluorescence enhancement
- Department of Laser Physics, College of Science for Woman, University of Babylon, Babylon, Iraq
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
Received: 2025-04-06
Revised: 2025-06-19
Accepted: 2025-06-25
Published in Issue 2025-06-30
Copyright (c) 2025 Noor Dhyaa Abdulameer, Lazem Hassan Aboud, Nizar Salim Shnan (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 28
Abstract
We have experimentally examined the effect of all dielectric metasurface's localization in plasmonic hot spots over the two dimensional periodic structure onto the laser induced fluorescence. The host medium of the dye achieved by spin coating of the Rh6G over the two dimensional MgF2/Gold structure and the LIF signal records in visible region by nanosecond Green laser pumping. Our results indicate that the localized field enhancement due to Electric and Magnetic dipoles resonance of all dielectric media and also refractive index localization effect can boost laser induced fluorescence in the visible region until 5 times in the comparison with the sample without bottom dielectric layer.
Keywords
- Magneto-plasmonics,
- Plasmon,
- Laser induced fluorescence,
- Surface lattice resonance,
- Metasurfaces,
- Light localization
References
- A. Ehn, J. Zhu, X. Li, and J. Kiefer. “Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.” Applied Spectroscopy, 71(3), 2017.
- D. F. McMillen, K. E. Lewis, G. P. Smith, and D. M. Golden. “Quantitative laser Diauostics for Combustion Chemistry and Propulsion.” J. Phys. Qhem., 86(709), 1982.
- A. Pascal, B. Palash, and N. Lukas. “Enhancement and quenching of single-molecule fluorescence.”. Phys. Rev. Lett., 96:113002, 2006. DOI: https://doi.org/10.1103/PhysRevLett.96.113002.
- R. Antoine, P. F. Brevet, H. H. Girault, D. Bethell, and D. J. Schiffrin. “Surface plasmon enhanced non-linear optical response of gold nanoparticles at the air/toluene interface.”. Chem. Commun., pages 1901–1902, 1997.
- F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas. “Plasmonic Enhancement of Molecular Fluorescence.”. Nano letters, 7(2), 2007.
- K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi. “Long-range surface plasmonpolariton nanowire waveguides for device applications.”. Opt. Express, 14(1):314319, 2006.
- W. Deng, F. Xie, H. Baltar, and E. Goldys. “Metal-enhanced fluorescence in the life sciences: Here, now and beyond.”. Phys. Chem. Chem. Phys., 15:15695, 2013.
- H. Mbarak, S. M. Hamidi, E. Mohajerani, and Y. Zaatar. “Electrically driven flexible 2D plasmonic structure based on a nematic liquid crystal.”. Journal of Physics D: Applied Physics, 52(41):415106, 2019.
- N. D. Abdulameer, N. S. Shnan, L. H. Aboud, and S. M. Hamidi. “Two dimensional MgF2 metasurface for Laser induced fluorescence enhancement.”. Optical and Quantum Electronics, 2025.
- H. Mbarak, R. Taheri Ghahrizjani, S. M. Hamidi, E. Mohajerani, and Y. Zaatar. “Reversible and tunable photochemical switch based on plasmonic structure.”. Scientific Reports, 10(1):1–7, 2020.
- V. K. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang. “Light-Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals.”. Advanced Materials, 20(18):3528–3532, 2008.
- S. Khatua, W. Chang, P. Swanglap, J. Olson, and S. Link. “Active Modulation of Nanorod Plasmons”. Nano Letters, 11(9):3797–3802, 2011.
- M. J. Moradi, S. M. Mohseni, S. Mahmoodi, D. Rezvani, N. Ansari, S. Chung, and J. Akerman. “Au/NiFemagnetoplasmonics: Large enhancement of magneto-optical Kerr effect for magnetic field sensors and memories.”. Electronic Materials Letters, 11(3):440–446, 2015.
- S. F. Haddawi, M. Mirahmadi, H. Mbarak, A. K. Kodeary, M. Ghasemi, and S. M. Hamidi. “Footprint of plexcitonic states in low-power green–blue plasmonic random laser.”. Applied Physics A, 125(12), 2019.
- F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe. “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS.”. Sensors and Actuators A: Physical, 151(2):95–99, 2009.
- M. J. Dodge. “Refractive properties of magnesium fluoride.”. Applied Optics, 23(12):1980–1985, 1984.
- P. B. Johnson and R. W. Christy. “Optical Constants of the Noble Metals.”. Physical Review B, 6:4370–4379, 1972.