10.57647/j.jtap.2025.1903.29

Reconfigurable metasurface based on graphene micro-ribbons for beam focusing applications

  1. Laser and Optoelectronics Engineering, Al-Nahrain University, Iraq
  2. College of Information Engineering, Al-Nahrain University, Iraq

Received: 2025-04-06

Revised: 2025-05-30

Accepted: 2025-06-27

Published in Issue 2025-06-30

How to Cite

1.
Abdulkareem ZJ, Hamad TK, Elwi TA. Reconfigurable metasurface based on graphene micro-ribbons for beam focusing applications. J Theor Appl phys. 2025 Jun. 30;19(3). Available from: https://oiccpress.com/jtap/article/view/17454

PDF views: 26

Abstract

 Metasurface represents a transformative advancement in photonics, offering unparalleled control over electromagnetic wave properties. The combination of graphene and metasurfaces propels metasurfaces to new heights of compact footprint, reconfigurability, and multifunctionality. This article proposes a reconfigurable metasurface based on graphene micro-ribbons to focus the reflected beam dynamically by adjusting the Fermi level of graphene. Based on the phase shift distribution generated by modulating graphene Fermi level, the metasurface can focus the beam at different focal lengths, shift the focal point, and focus the beam at the double focal point. The performance of the metasurface is characterized by calculating the focusing efficiency, full width at half maximum, and the numerical aperture. The metasurface exhibits high efficiency at long focal lengths. These focus capabilities provide a potentially efficient method for the development and simplification of reconfigurable beam-focusing systems.

Keywords

  • Reconfigurable metasurface,
  • Graphene,
  • Fermi energy,
  • Micro-ribbons,
  • Beam focusing

References

  1. E. Mikheeva, C. Kyrou, F. Bentata, S. Khadir, S. Cueff, and P. Genevet, “Space and Time Modulations of Light with Metasurfaces: Recent Progress and Future Prospects,” ACS Photonics, 9(5), 1458–1482 (2022).
  2. V. C. Su, C. H. Chu, G. Sun, and D. P. Tsai, “Advances in optical metasurfaces: fabrication and applications [Invited],” Opt. Express, 26(10), 13148 (2018).
  3. X. Wang, J. Ding, B. Zheng, S. An, G. Zhai, and H. Zhang, “Simultaneous Realization of Anomalous Reflection and Transmission at Two Frequencies using Bi-functional Metasurfaces,” Sci. Rep., 8(1), (2018).
  4. H. Zhou, J. Cheng, F. Fan, X. Wang, and S. Chang, “Graphene-based transmissive terahertz metalens with dynamic and fixed focusing,” J. Phys. D: Appl. Phys., 53(2),025105 (2019).
  5. F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys., 81(2), 026401 (2017).
  6. C. U. Hail, A. U. Michel, D. Poulikakos, and H. Eghlidi, “Optical Metasurfaces: Evolving from Passive to Adaptive,” Adv. Opt. Mater., 7(14), (2019).
  7. J. Hu, S. Bandyopadhyay, Y. Liu, and L. Shao, “A Review on Metasurface: From Principle to Smart Metadevices,” Front. Phys., 8, (2021).
  8. Z. Zhang, H. Shi, L. Wang, J. Chen, X. Chen, J. Yi, A. Zhang, and H. Liu, “Recent Advances in Reconfigurable Metasurfaces: Principle and Applications,” Nanomaterials, 13(3), 534 (2023).
  9. T. Cui, B. Bai, and H. Sun, “Tunable Metasurfaces Based on Active Materials,” Adv. Funct. Mater., 29(10), (2019).
  10. W. Luo, S. A. Abbasi, S. Zhu, X. Li, H.-P. Ho, and W. Yuan, “Electrically switchable and tunable infrared light modulator based on functional graphene metasurface,” Nanophotonics, 12(9),1797–1807 (2023).
  11. D. Neshev and I. Aharonovich, “Optical metasurfaces: new generation building blocks for multi-functional optics,” Light: Science & Applications, 7(1), (2018).
  12. F. Han, T. L. Pham, K. Pilarczyk, N. T. Tung, D. H. Le, G. A. E. Vandenbosch, J. V. de Vondel, N. Verellen, X. Zheng, and Ewald Janssens, “Tunable Mid‐Infrared Multi‐Resonant Graphene‐Metal Hybrid Metasurfaces,” Adv. Opt. Mater., 12(19), (2024).
  13. C. Zeng,H. Lu, D. Mao, Y. Du, H. Hua, W. Zhao, and J. Zhao, “Graphene-empowered dynamic metasurfaces and metadevices,” OEA, 5(4), 200098–200098 (2022).
  14. Y. Li, M. R. Krisshnamurthi, W. Luo, A. K. Swan, X. Ling, and R. Paiella, “Graphene metasurfaces for terahertz wavefront shaping and light emission [Invited],” Opt. Mater. Express, 12(12), 4528 (2022).
  15. C. Shi, I. J. Luxmoore, and G. R. Nash, “Gate tunable graphene-integrated metasurface modulator for mid-infrared beam steering,” Opt. Express, 27(10), 14577 (2019).
  16. N. Ullah, W. Liu, G. Wang, Z. Wang, A. U. Khalid, B. Hu, J. Liu, and Y. Zhang, “Gate-controlled terahertz focusing based on graphene-loaded metasurface,” Opt. Express,28(3),2789 (2020).
  17. S. Yu, Y. Kim, E. Shin, and S.-H. Kwon, “Dynamic Beam Steering and Focusing Graphene Metasurface Mirror Based on Fermi Energy Control,” Micromachines, 14(4), 715 (2023).
  18. J. Fang, R. Zhong, B. Xu, H. Zhang, Q. Wu, B. Guo, J. Wang, Z. Wu, M. Hu, K. Zhang, and D. Liu, “Reconfigurable Terahertz Spatial Deflection Varifocal Metamirror,” Micromachines, 14(7), 1313(2023).
  19. J. Huang, H. Guan, B. Hu, G. Wang, W. Liu, Z. Wang, J. Liu, Y. Zhang, and Y. Wang, “Enhanced terahertz focusing for a graphene-enabled active metalens,” Opt. Express, 28(23) 35179 (2020).
  20. W. Yao, L. Tang, J. Wang, C. Ji, X. Wei, and Y. Jiang, “Spectrally and Spatially Tunable Terahertz Metasurface Lens Based on Graphene Surface Plasmons,” IEEE Photonics J., 10 (4),1–8 (2018).
  21. X. Shang, L. Xu, H. Yang, H. He, Q. He, Y. Huang, and L. Wang, “Graphene-enabled reconfigurable terahertz wavefront modulator based on complete Fermi level modulated phase,” New Journal of Physics, 22(6), 063054 (2020).
  22. K. He, T. Ning, J. Li, L. Pei, J. Zheng, J. Wang, and B. Bai, “Wavefront reconfigurable metasurface through graphene micro-ribbons with resonant strategy,” Results in Physics, 49, 106484 (2023).
  23. Y. Zhang, Y. Feng, and J. Zhao, “Graphene-Enabled Tunable Phase Gradient Metasurface for Broadband Dispersion Manipulation of Terahertz Wave,” Micromachines,14 (11), 2006 (2023).
  24. Q. Wu, W. H. Fan, C. Qin, and X. Q. Jiang, “Dual-parameter controlled reconfigurable metasurface for enhanced terahertz beamforming via inverse design method,” Physica Scripta, 99(6), 065517 (2024).
  25. F. Jabbarzadeh, M. Heydari, and A. Habibzadeh-Sharif, “A comparative analysis of the accuracy of Kubo formulations for graphene plasmonics,” Mater. Res. Express, 6(8), 086209 (2019).
  26. Z. Ullah, G. Witjaksono, I. Nawi, N. Tansu, M. I. Khattak, and M. Junaid, “A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications,” Sensors, 20(5),1401 (2020).
  27. H. Zhang and Z. Wu, “Analysis of Electromagnetic Properties of New Graphene Partial Discharge Sensor Electrode Plate Material,” Sensors, 22(7), 2550 (2022).
  28. A. S. Vorobev, G. V. Bianco, G. Bruno, A. D’Orazio, L. O’Faolain, and M. Grande, “Tuning of Graphene-Based Optical Devices Operating in the Near-Infrared,” Appl. Sci., 11(18), 8367(2021).
  29. Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep., 5(1), (2015).
  30. M. C. Sherrott, P. W.C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, H. A. Atwater, “Experimental Demonstration of ˃230° Phase Modulation in Gate-Tunable Graphene–Gold Reconfigurable Mid-Infrared Metasurfaces,” Nano Lett., 17(5), 3027–3034 (2017).
  31. T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wavefront control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett., 107(5), (2015).
  32. Y. He, B. Song, and J. Tang, “Optical metalenses: fundamentals, dispersion manipulation, and applications,” Front. Optoelectron., 15(1), (2022).
  33. R. K. Sinha, S. Sharma, S. Bag, S. Kar, B. Lahiri, and S. K. Varshney, “Highly efficient two-dimensional beam steering using all-dielectric fiber metatip,” Optics & Laser Technology, 148(107694), (2022).
  34. Y. Li and R. Paiella, “Tunable terahertz metasurface platform based on CVD graphene plasmonics,” Opt. Express, 29(24), 40594(2021).
  35. Y. Zhang, Y. Feng, and J. Zhao, “Graphene-Enabled Tunable Phase Gradient Metasurface for Broadband Dispersion Manipulation of Terahertz Wave,” Micromachines, 14(11), 2006 (2023).
  36. J. Wang, J. Ma, Z. Shu, Z.-D. Hu, and X. Wu, “Terahertz Metalens for Multifocusing Bidirectional Arrangement in Different Dimensions,” IEEE Photonics J., 11(1), 1–11 (2019).
  37. Y. Zhang, J. Zhao, J. Zhou, Z. Liu, and Y. Fu, “Switchable Polarization Selective Terahertz Wavefront Manipulation in a Graphene Metasurface,” IEEE Photonics J., 11(3), 1–9 (2019).
  38. L. Luo, K. Wang, K. Guo, F. Shen, X. Zhang, Z. Yin, and Z. Guo, “Tunable manipulation of terahertz wavefront based on graphene metasurfaces,” J. Opt., 19(11), 115104 (2017).
  39. K. He, T. Ning, J. Li, L. Pei, J. Zheng, J. Wang, and B. Bai, “Wavefront reconfigurable metasurface through graphene micro-ribbons with resonant strategy,” Results Phys., 49, 106484 (2023).