10.57647/j.jtap.2025.1903.31

Performance Analysis of Hybrid Holmium-Ytterbium, Holmium-Thulium, and Ytterbium-Thulium Amplifiers for High Data Rate of a 200 Mbit/s Optical Transmission

  1. Department Of Electronics & Communication Engineering , I.K Gujral Punjab Technical University, Jalandhar, India
  2. Department of Electronics & Communication Engineering ,Sardar Beant Singh State University ,Gurdaspur ,Punjab ,India
  3. Department Of Electronics & Communication Engineering, I.KGujral Punjab Technical University, Jalandhar, India
  4. Department of Electrical Engineering, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India

Received: 2024-11-03

Revised: 2025-05-29

Accepted: 2025-06-30

Published in Issue 2025-06-30

How to Cite

1.
Kaur J, Goyal R, Kaur G. Performance Analysis of Hybrid Holmium-Ytterbium, Holmium-Thulium, and Ytterbium-Thulium Amplifiers for High Data Rate of a 200 Mbit/s Optical Transmission. J Theor Appl phys. 2025 Jun. 30;19(3). Available from: https://oiccpress.com/jtap/article/view/17295

PDF views: 19

Abstract

The study of three hybrid rare-earth-doped fiber amplifiers Holmium-Ytterbium (Ho + Yb), Holmium-Thulium (Ho + Tm), and Ytterbium-Thulium (Yb + Tm) for 200 Mbit/s is conducted for optical transmission systems. Leveraging a custom simulation framework in OptiSystem, we evaluate gain, noise figure, Q-factor, and bit error rate (BER) across 1535–1560 THz and fiber lengths of 0–50 meters. The Ho:Yb configuration demonstrates unparalleled performance, achieving a peak gain of 0 dB, a noise figure of 5 dB, and an ultralow BER of <10^(-14), attributed to efficient energy transfer between Ho3+ and Yb3+ ions. In contrast, (Ho + Tm) exhibits suboptimal gain (−0.5 dB) and elevated noise (6 dB) due to spectral mismatches, while (Yb + Tm) offers moderate stability for medium-haul applications. By correlating dopant interactions with performance metrics, this work establishes (Ho + Yb) as the optimal choice for high-speed, long-distance networks, addressing critical gaps in hybrid amplifier design.

Keywords

  • Rare-earth-doped hybrid optical amplifier,
  • Fiber Bragg gratings,
  • High-speed data transmission

References

  1. E. Desurvire and M. N. Zervas, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” Phys. Today, vol. 48, no. 2, 1995. doi: 10.1063/1.2807915.
  2. R. Ramadani, S. A. Khairunisa, and M. Khoiro, “Characteristics Analysis of Hybrid Optical Amplifier with Doped Fiber Variations for Fiber Optic Communications Network,” J. Phys.: Conf. Ser., vol. 2623, 2023. doi: 10.1088/1742-6596/2623/1/012007.
  3. K. O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightw. Technol., vol. 15, no. 8, 1997. doi: 10.1109/50.618320.
  4. H. Mrabet, “A Performance Analysis of a Hybrid OCDMA-PON Configuration Based on IM/DD Fast-OFDM Technique for Access Network,” Appl. Sci. (Switzerland), vol. 10, no. 21, 2020. doi: 10.3390/app10217690.
  5. V. V. Reddy, B. Rajalakshmi, H. Pal Thethi, V. Kumar, A. Kumar, and M. A. Alkhafaji, “Optical Communication Systems for Ultra-High-Speed Data Transmission,” in Proc. 2023 10th IEEE UPCON, 2023. doi: 10.1109/UPCON57546.2023.10114590.
  6. A. Munir, A. Ali, and A. Latif, “Mode Coupling in Mode Division Multiplexing Techniques for Futuristic High-Speed Optical Networks and Exploring Optical Fiber Parameters to Control Mode Coupling,” Mehran Univ. Res. J. Eng. Technol., vol. 42, no. 4, 2023. doi: 10.22581/muet1982.2304.2868.
  7. J. H. Rajini and S. T. Selvi, “Performance Analysis of Hybrid Optical Amplifiers for 64×10 Gbps DWDM System,” Asian J. Appl. Sci., vol. 8, no. 1, 2015. doi: 10.3923/ajaps.2015.46.54.
  8. R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, and R. J. Mears, “Low-Noise Erbium-Doped Fibre Amplifier Operating at 1.54μm,” Electron. Lett., vol. 23, no. 19, 1987. doi: 10.1049/el:19870719.
  9. Z. Yi et al., “Tunable multicolor upconversion luminescence and paramagnetic property of the lanthanide doped fluorescent/magnetic bi-function NaYbF4 microtubes,” J. Alloys Compd., vol. 589, 2014. doi: 10.1016/j.jallcom.2013.12.036.
  10. P. Singh et al., “Advances in Dispersion Compensation Techniques for Long-Haul Optical Links,” Opt. Quantum Electron., vol. 53, 2021. doi: 10.1007/s11082-021-03485-8.
  11. N. Kaur, R. Goyal, and M. Rani, “A Review on Spectral Amplitude Coding Optical Code Division-Multiple Access,” J. Opt. Commun., vol. 38, no. 1, pp. 77-88, 2017. doi: 10.1515/joc-2016-0052.
  12. I. P. Kohli, Shalvi, and R. Goyal, “Comparative Investigation and Compensating Dispersion Losses in DWDM Systems using EDFA Amplifier for Different Data Formats,” Int. J. Comput. Appl., vol. 1, pp. 1-4, 2013.
  13. R. Kumar et al., “Hybrid Amplifier Performance in DWDM Systems,” Opt. Quantum Electron., vol. 54, 2022. doi: 10.1007/s11082-022-03717-5.
  14. M. Rani et al., “Symmetrical Dispersion Compensation for High-Speed Optical Transmission,” Opt. Quantum Electron., vol. 54, 2022. doi: 10.1007/s11082-022-04142-4.
  15. R. Goyal, R. S. Kaler, and T. S. Kamal, “Comparative study of different optical amplifiers for hybrid passive optical networks,” Optoelectron. Adv. Mater. Rapid Commun., vol. 10, no. 1-2, pp. 9-11, 2016.
  16. S. N. Pottoo, R. Goyal, and A. Gupta, “Development of 32-GBaud DP-QPSK free space optical transceiver using homodyne detection and advanced digital signal processing for future optical networks,” Opt. Quantum Electron., vol. 52, no. 496, 2020. doi: 10.1007/s11082-020-02623-y.
  17. L. Malik, “Dark Hollow Lasers May Be Better Candidates for Holography,” Opt. Laser Technol., vol. 132, p. 106485, 2020. doi: 10.1016/j.optlastec.2020.106485.
  18. L. Malik and A. Escarguel, “Role of the Temporal Profile of Femtosecond Lasers of Two Different Colours in Holography,” Europhys. Lett., vol. 124, no. 6, p. 64002, 2020. doi: 10.1209/0295-5075/124/64002.
  19. L. Malik et al., “Uncovering the Remarkable Contribution of Lasers' Peak Intensity Region in Holography,” Laser Phys. Lett., vol. 18, no. 8, p. 086003, 2021. doi: 10.1088/1612-202X/ac09da.
  20. L. Malik, G. S. Saini, and A. Tevatia, “A Self-Sustained Machine Learning Model to Predict the In-Flight Mechanical Properties of a Rocket Nozzle by Inputting Material Properties and Environmental Conditions,” in Handbook of Sustainable Materials: Modelling, Characterization, and Applications, pp. 471-484, Elsevier, 2023. doi: 10.1201/9781003297772.
  21. M. Kumar, H. K. Malik, and S. Kumar, “Enhancement of electron-bunch quality in bubble domain utilizing plasma ramp profile with various density-hill widths in laser wakefield acceleration,” Opt. Quantum Electron., vol. 56, no. 3, p. 314, 2024. doi: 10.1007/s11082-023-05918-y.
  22. L. Malik et al., “Sustainability of wind turbine blade: instantaneous real-time prediction of its failure using machine learning and solution based on materials and design,” in Handbook of Sustainable Materials: Modelling, Characterization, and Optimization, pp. 399-430, CRC Press, 2023. doi: 10.1201/9781003297772.
  23. L. Malik, “Novel concept of tailorable magnetic field and electron pressure distribution in a magnetic nozzle for effective space propulsion,” Propuls. Power Res., vol. 12, no. 1, pp. 59-68, 2023. doi: 10.1016/j.jppr.2023.02.002.
  24. D. Verma and H. K. Malik, “Analysis of dust charge fluctuations with double-ionized ions and plasma oscillations/instabilities in Hall thrusters,” Vacuum, vol. 220, p. 112866, 2024. doi: 10.1016/j.vacuum.2023.112866.
  25. L. Malik, “In-flight plume control and thrust tuning in magnetic nozzle using tapered-coils system under the effect of density gradient,” IEEE Trans. Plasma Sci., vol. 51, no. 5, pp. 1325-1333, 2023. doi: 10.1109/TPS.2023.3263009.
  26. R. Kumar, H. K. Malik, and S. Kumar, “One-Dimensional Study of Spatiotemporal Evolution of Magnetic Field by Weibel Instability in Counter-Streaming Plasma Flows,” J. Theor. Appl. Phys., vol. 18, no. 4, pp. 1-12, 2024. doi: 10.1007/s40094-024-00341-9.
  27. L. Malik, “Tapered coils system for space propulsion with enhanced thrust: A concept of plasma detachment,” Propuls. Power Res., vol. 11, no. 2, pp. 171-180, 2022. doi: 10.1016/j.jppr.2022.04.002.
  28. L. Devi and H. K. Malik, “Self-focusing and defocusing phenomena of super-Gaussian laser beams in plasmas carrying density gradient,” J. Opt., vol. 25, no. 3, p. 035401, 2023. doi: 10.1088/2040-8986/acb3e0.
  29. S. Bhaskar and H. K. Malik, “Propagation of Twisted Laser Carrying Orbital Angular Momentum in Magnetized Plasma,” Phys. Plasmas, vol. 31, no. 5, p. 056501, 2024. doi: 10.1063/5.0134456.
  30. L. Malik, M. Kumar, and I. V. Singh, “A three-coil setup for controlled divergence in magnetic nozzle,” IEEE Trans. Plasma Sci., vol. 49, no. 7, pp. 2227-2237, 2021. doi: 10.1109/TPS.2021.3090457.
  31. R. Goyal, R. Randhawa, and R. S. Kaler, “Single tone and multi-tone microwave over fiber communication system using direct detection method,” Optik, vol. 123, no. 10, pp. 917-923, 2012. doi: 10.1016/j.ijleo.2012.03.047.
  32. R. Goyal, R. S. Kaler, and T. S. Kamal, “Performance analysis of different amplifiers for polarization dependent 10 Gbps bidirectional hybrid (WDM/TDM) with 16-QAM modulation technique,” J. Opt. Technol., vol. 83, no. 8, pp. 490-493, 2017. doi: 10.1364/JOT.83.000490.
  33. A. Thakur et al., “Performance Evaluation of SS-FSO Communication System Incorporating Different Line Coding,” Opt. Quantum Electron., vol. 53, no. 330, pp. 1-9, 2021. doi: 10.1007/s11082-021-02856-4.
  34. U. Gupta, M. Rani, and R. Goyal, “Comparison of different amplifiers at different data rates in WDM system performance,” Int. J. All Res. Educ. Sci. Methods, vol. 4, no. 6, pp. 98-101, 2016.
  35. U. Gupta, M. Rani, and R. Goyal, “Performance analysis of WDM system using SOA for high data rate transmission,” Int. J. Wired Wireless Commun., vol. 4, no. 2, pp. 19-24, 2016.
  36. A. G. Alharbi et al., “Performance optimization of Holmium doped fiber amplifiers for optical communication applications in 2–2.15 μm wavelength range,” Photonics, vol. 9, no. 4, pp. 245-257, 2022.
  37. J. Mirza, A. Atieh, B. Kanwal, and S. Ghafoor, “Novel pumping scheme of Holmium doped fiber amplifiers operating around 2 μm using 1.48 μm lasers exploiting cascaded fiber lasers,” Optik, vol. 262, p. 169238, 2022.
  38. M. R. Moghaddam, “Experimentally and theoretical studies on Yb sensitized erbium doped fiber amplifier,” Optik, vol. 122, no. 20, pp. 1783-1786, 2011.
  39. Z. Yi et al., “Tunable multicolor upconversion luminescence and paramagnetic property of the lanthanide doped fluorescent/magnetic bi-function NaYbF4 microtubes,” J. Alloys Compd., vol. 589, 2014. doi: 10.1016/j.jallcom.2013.12.036.