Performance Analysis of Hybrid Holmium-Ytterbium, Holmium-Thulium, and Ytterbium-Thulium Amplifiers for High Data Rate of a 200 Mbit/s Optical Transmission
- Department Of Electronics & Communication Engineering , I.K Gujral Punjab Technical University, Jalandhar, India
- Department of Electronics & Communication Engineering ,Sardar Beant Singh State University ,Gurdaspur ,Punjab ,India
- Department Of Electronics & Communication Engineering, I.KGujral Punjab Technical University, Jalandhar, India
- Department of Electrical Engineering, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
Received: 2024-11-03
Revised: 2025-05-29
Accepted: 2025-06-30
Published in Issue 2025-06-30
Copyright (c) 2025 Jaspreet Kaur, Rakesh Goyal, Gagandeep Kaur (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 19
Abstract
The study of three hybrid rare-earth-doped fiber amplifiers Holmium-Ytterbium (Ho + Yb), Holmium-Thulium (Ho + Tm), and Ytterbium-Thulium (Yb + Tm) for 200 Mbit/s is conducted for optical transmission systems. Leveraging a custom simulation framework in OptiSystem, we evaluate gain, noise figure, Q-factor, and bit error rate (BER) across 1535–1560 THz and fiber lengths of 0–50 meters. The Ho:Yb configuration demonstrates unparalleled performance, achieving a peak gain of 0 dB, a noise figure of 5 dB, and an ultralow BER of <10^(-14), attributed to efficient energy transfer between Ho3+ and Yb3+ ions. In contrast, (Ho + Tm) exhibits suboptimal gain (−0.5 dB) and elevated noise (6 dB) due to spectral mismatches, while (Yb + Tm) offers moderate stability for medium-haul applications. By correlating dopant interactions with performance metrics, this work establishes (Ho + Yb) as the optimal choice for high-speed, long-distance networks, addressing critical gaps in hybrid amplifier design.
Keywords
- Rare-earth-doped hybrid optical amplifier,
- Fiber Bragg gratings,
- High-speed data transmission
References
- E. Desurvire and M. N. Zervas, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” Phys. Today, vol. 48, no. 2, 1995. doi: 10.1063/1.2807915.
- R. Ramadani, S. A. Khairunisa, and M. Khoiro, “Characteristics Analysis of Hybrid Optical Amplifier with Doped Fiber Variations for Fiber Optic Communications Network,” J. Phys.: Conf. Ser., vol. 2623, 2023. doi: 10.1088/1742-6596/2623/1/012007.
- K. O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightw. Technol., vol. 15, no. 8, 1997. doi: 10.1109/50.618320.
- H. Mrabet, “A Performance Analysis of a Hybrid OCDMA-PON Configuration Based on IM/DD Fast-OFDM Technique for Access Network,” Appl. Sci. (Switzerland), vol. 10, no. 21, 2020. doi: 10.3390/app10217690.
- V. V. Reddy, B. Rajalakshmi, H. Pal Thethi, V. Kumar, A. Kumar, and M. A. Alkhafaji, “Optical Communication Systems for Ultra-High-Speed Data Transmission,” in Proc. 2023 10th IEEE UPCON, 2023. doi: 10.1109/UPCON57546.2023.10114590.
- A. Munir, A. Ali, and A. Latif, “Mode Coupling in Mode Division Multiplexing Techniques for Futuristic High-Speed Optical Networks and Exploring Optical Fiber Parameters to Control Mode Coupling,” Mehran Univ. Res. J. Eng. Technol., vol. 42, no. 4, 2023. doi: 10.22581/muet1982.2304.2868.
- J. H. Rajini and S. T. Selvi, “Performance Analysis of Hybrid Optical Amplifiers for 64×10 Gbps DWDM System,” Asian J. Appl. Sci., vol. 8, no. 1, 2015. doi: 10.3923/ajaps.2015.46.54.
- R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, and R. J. Mears, “Low-Noise Erbium-Doped Fibre Amplifier Operating at 1.54μm,” Electron. Lett., vol. 23, no. 19, 1987. doi: 10.1049/el:19870719.
- Z. Yi et al., “Tunable multicolor upconversion luminescence and paramagnetic property of the lanthanide doped fluorescent/magnetic bi-function NaYbF4 microtubes,” J. Alloys Compd., vol. 589, 2014. doi: 10.1016/j.jallcom.2013.12.036.
- P. Singh et al., “Advances in Dispersion Compensation Techniques for Long-Haul Optical Links,” Opt. Quantum Electron., vol. 53, 2021. doi: 10.1007/s11082-021-03485-8.
- N. Kaur, R. Goyal, and M. Rani, “A Review on Spectral Amplitude Coding Optical Code Division-Multiple Access,” J. Opt. Commun., vol. 38, no. 1, pp. 77-88, 2017. doi: 10.1515/joc-2016-0052.
- I. P. Kohli, Shalvi, and R. Goyal, “Comparative Investigation and Compensating Dispersion Losses in DWDM Systems using EDFA Amplifier for Different Data Formats,” Int. J. Comput. Appl., vol. 1, pp. 1-4, 2013.
- R. Kumar et al., “Hybrid Amplifier Performance in DWDM Systems,” Opt. Quantum Electron., vol. 54, 2022. doi: 10.1007/s11082-022-03717-5.
- M. Rani et al., “Symmetrical Dispersion Compensation for High-Speed Optical Transmission,” Opt. Quantum Electron., vol. 54, 2022. doi: 10.1007/s11082-022-04142-4.
- R. Goyal, R. S. Kaler, and T. S. Kamal, “Comparative study of different optical amplifiers for hybrid passive optical networks,” Optoelectron. Adv. Mater. Rapid Commun., vol. 10, no. 1-2, pp. 9-11, 2016.
- S. N. Pottoo, R. Goyal, and A. Gupta, “Development of 32-GBaud DP-QPSK free space optical transceiver using homodyne detection and advanced digital signal processing for future optical networks,” Opt. Quantum Electron., vol. 52, no. 496, 2020. doi: 10.1007/s11082-020-02623-y.
- L. Malik, “Dark Hollow Lasers May Be Better Candidates for Holography,” Opt. Laser Technol., vol. 132, p. 106485, 2020. doi: 10.1016/j.optlastec.2020.106485.
- L. Malik and A. Escarguel, “Role of the Temporal Profile of Femtosecond Lasers of Two Different Colours in Holography,” Europhys. Lett., vol. 124, no. 6, p. 64002, 2020. doi: 10.1209/0295-5075/124/64002.
- L. Malik et al., “Uncovering the Remarkable Contribution of Lasers' Peak Intensity Region in Holography,” Laser Phys. Lett., vol. 18, no. 8, p. 086003, 2021. doi: 10.1088/1612-202X/ac09da.
- L. Malik, G. S. Saini, and A. Tevatia, “A Self-Sustained Machine Learning Model to Predict the In-Flight Mechanical Properties of a Rocket Nozzle by Inputting Material Properties and Environmental Conditions,” in Handbook of Sustainable Materials: Modelling, Characterization, and Applications, pp. 471-484, Elsevier, 2023. doi: 10.1201/9781003297772.
- M. Kumar, H. K. Malik, and S. Kumar, “Enhancement of electron-bunch quality in bubble domain utilizing plasma ramp profile with various density-hill widths in laser wakefield acceleration,” Opt. Quantum Electron., vol. 56, no. 3, p. 314, 2024. doi: 10.1007/s11082-023-05918-y.
- L. Malik et al., “Sustainability of wind turbine blade: instantaneous real-time prediction of its failure using machine learning and solution based on materials and design,” in Handbook of Sustainable Materials: Modelling, Characterization, and Optimization, pp. 399-430, CRC Press, 2023. doi: 10.1201/9781003297772.
- L. Malik, “Novel concept of tailorable magnetic field and electron pressure distribution in a magnetic nozzle for effective space propulsion,” Propuls. Power Res., vol. 12, no. 1, pp. 59-68, 2023. doi: 10.1016/j.jppr.2023.02.002.
- D. Verma and H. K. Malik, “Analysis of dust charge fluctuations with double-ionized ions and plasma oscillations/instabilities in Hall thrusters,” Vacuum, vol. 220, p. 112866, 2024. doi: 10.1016/j.vacuum.2023.112866.
- L. Malik, “In-flight plume control and thrust tuning in magnetic nozzle using tapered-coils system under the effect of density gradient,” IEEE Trans. Plasma Sci., vol. 51, no. 5, pp. 1325-1333, 2023. doi: 10.1109/TPS.2023.3263009.
- R. Kumar, H. K. Malik, and S. Kumar, “One-Dimensional Study of Spatiotemporal Evolution of Magnetic Field by Weibel Instability in Counter-Streaming Plasma Flows,” J. Theor. Appl. Phys., vol. 18, no. 4, pp. 1-12, 2024. doi: 10.1007/s40094-024-00341-9.
- L. Malik, “Tapered coils system for space propulsion with enhanced thrust: A concept of plasma detachment,” Propuls. Power Res., vol. 11, no. 2, pp. 171-180, 2022. doi: 10.1016/j.jppr.2022.04.002.
- L. Devi and H. K. Malik, “Self-focusing and defocusing phenomena of super-Gaussian laser beams in plasmas carrying density gradient,” J. Opt., vol. 25, no. 3, p. 035401, 2023. doi: 10.1088/2040-8986/acb3e0.
- S. Bhaskar and H. K. Malik, “Propagation of Twisted Laser Carrying Orbital Angular Momentum in Magnetized Plasma,” Phys. Plasmas, vol. 31, no. 5, p. 056501, 2024. doi: 10.1063/5.0134456.
- L. Malik, M. Kumar, and I. V. Singh, “A three-coil setup for controlled divergence in magnetic nozzle,” IEEE Trans. Plasma Sci., vol. 49, no. 7, pp. 2227-2237, 2021. doi: 10.1109/TPS.2021.3090457.
- R. Goyal, R. Randhawa, and R. S. Kaler, “Single tone and multi-tone microwave over fiber communication system using direct detection method,” Optik, vol. 123, no. 10, pp. 917-923, 2012. doi: 10.1016/j.ijleo.2012.03.047.
- R. Goyal, R. S. Kaler, and T. S. Kamal, “Performance analysis of different amplifiers for polarization dependent 10 Gbps bidirectional hybrid (WDM/TDM) with 16-QAM modulation technique,” J. Opt. Technol., vol. 83, no. 8, pp. 490-493, 2017. doi: 10.1364/JOT.83.000490.
- A. Thakur et al., “Performance Evaluation of SS-FSO Communication System Incorporating Different Line Coding,” Opt. Quantum Electron., vol. 53, no. 330, pp. 1-9, 2021. doi: 10.1007/s11082-021-02856-4.
- U. Gupta, M. Rani, and R. Goyal, “Comparison of different amplifiers at different data rates in WDM system performance,” Int. J. All Res. Educ. Sci. Methods, vol. 4, no. 6, pp. 98-101, 2016.
- U. Gupta, M. Rani, and R. Goyal, “Performance analysis of WDM system using SOA for high data rate transmission,” Int. J. Wired Wireless Commun., vol. 4, no. 2, pp. 19-24, 2016.
- A. G. Alharbi et al., “Performance optimization of Holmium doped fiber amplifiers for optical communication applications in 2–2.15 μm wavelength range,” Photonics, vol. 9, no. 4, pp. 245-257, 2022.
- J. Mirza, A. Atieh, B. Kanwal, and S. Ghafoor, “Novel pumping scheme of Holmium doped fiber amplifiers operating around 2 μm using 1.48 μm lasers exploiting cascaded fiber lasers,” Optik, vol. 262, p. 169238, 2022.
- M. R. Moghaddam, “Experimentally and theoretical studies on Yb sensitized erbium doped fiber amplifier,” Optik, vol. 122, no. 20, pp. 1783-1786, 2011.
- Z. Yi et al., “Tunable multicolor upconversion luminescence and paramagnetic property of the lanthanide doped fluorescent/magnetic bi-function NaYbF4 microtubes,” J. Alloys Compd., vol. 589, 2014. doi: 10.1016/j.jallcom.2013.12.036.