Design and analysis of bi-layer graphene based photodetector enhanced by metallic nano-antenna
- Department of Electrical Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran.
- Antenna and Microwave Research Center, Urmia Branch, Islamic Azad University, Urmia, Iran.
- Department of Electrical Engineering, Tabriz branch, Islamic Azad University, Tabriz, Iran.
Received: 2025-01-05
Revised: 2025-02-10
Accepted: 2025-04-10
Published 2025-04-10
Copyright (c) 2025 Mahsa Naghipour, Mahdi Zavvari, Hassan Rasooli Saghai (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 17
Abstract
A new design of graphene-based photodetectors is proposed and studied to be used in near and mid-IR
applications. To do so, a bi-layer graphene is implemented as active photo-absorbing region and its absorption
spectra was calculated. Based on its response peak, an array of metallic nano rods is designed to be inserted
between two layers of graphene and resonate in desired response wavelengths. Such a resonance causes
induction and enhancement of incident field in the upper and lower graphene layers and leads to increased
absorption. The results show that by using the nano-rods, the mid-IR absorption response of graphene
bi-layer is doubled around 6.8 μm, however it is polarization-dependent. We also studied performance
characteristics of device such as photo-responsivity, dark and photocurrent and specific detectivity. According
the calculations, the proposed photodetector exhibits responsivity as high as about 27 A/W which is higher
than previously reported works.
Keywords
- Graphene,
- Photodetector,
- Plasmonic,
- Photonic crystals
References
- J. Campbell. “Recent advances in telecommunications avalanche photodiodes. ”. IEEE J. Lightwave Technol., 25:109–121, 2007. doi: 10.1109/JLT.2006.888481.
- I. S. Amiri, A. N. Z. Rashed, H. M. A. Kader, A. A. Al-Awamry, I. A. Abd El-Aziz, P. Yupapin, and G. Palai. “Optical communication transmission systems improvement based on chromatic and polarization Mode dispersion compensation simulation management. ”. Optik, 207:163853, 2020. doi: 10.1016/j.ijleo.2019.163853.
- M. Z. N. Nouri. “Second-harmonic generation in III-nitride quantum wells enhanced by metamaterials.”. IEEE Photon. Technol. Lett., 28:2199–2202, 2016. doi: 10.1109/LPT.2016.2587680.
- S. Y. L. Li, J. Qu, F. Zhou, J. Song, and G. Shen. “Recent advances in perovskite photodetectors for image sensing.”. Small, 17:2005606, 2021. doi: 10.1002/SMLL.202005606.
- Q. H. M. Chen, Y. Luo, and X. Tang. “Mid-infrared intraband photodetector via high carrier mobility HgSe colloidal quantum dots. ”. ACS Nano, 16:11027–11035, 2022. doi: 10.1021/acsnano.2c03631.
- M. Zavvari and V. Ahmadi. “Self quenched quantum dot avalanche photodetector for mid-infrared single photon detection.”. Infrared Phys. Technol., 62:7–12, 2014. doi: 10.1016/j.infrared.2013.10.005.
- A. K. R. S. Bansal, G. Chamundeswari, K. Prakash, P. R. Kumar, A. N. Z. Rashed, M. S. Soliman, and M. T. Islam. “Pt/ZnO and Pt/few-layer graphene/ZnO Schottky devices with Al ohmic contacts using Atlas simulation and machine learning.”. J. Sci. Adv. Mat. Dev., 9, 2024. doi: 10.1016/j.jsamd.2024.100798.
- A. D. S. Bansal, P. Jain, K. Prakash, K. Sharma, and N. Kumar. “Enhanced optoelectronic properties of bilayer graphene/HgCdTe-based single- and dual-junction photodetectors in long infrared regime.”. IEEE Trans. Nanotech, 18:781–789, 2019. doi: 10.1109/TNANO.2019.2931814.
- L. Y. A. Ren, H. Xu, J. Wu, and Z. Wanga. “Recent progress of III–V quantum dot infrared photodetectors on silicon. ”. J. Mater. Chem. C, 7:14441–14453, 2019. doi: 10.1039/C9TC05738B.
- V. K. A. Yakimov, A. Bloshkin, A. Dvurechenskii, and D. Utkin. “Quantum dot based mid-infrared photodetector enhanced by a hybrid metal-dielectric optical antenna.”. J. Phys. D: Appl. Phys., 53:335105, 2020. doi: 10.1088/1361-6463/ab84a7.
- V. K. A. Gupta, S. Bansal, M. H. Alsharif, A. Jahid, and H. S. Cho. “A miniaturized Tri-band implantable antenna for ISM/WMTS/Lower UWB/Wi-Fi frequencies. ”. Sensors, 23, 2023. doi: 10.3390/s23156989.
- T. M. F. H. L. Koppens, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini. “Photodetectors based on graphene, other two-dimensional materials and hybrid systems.”. Nature Nanotech., 9:780–793, 2014. doi: 10.1038/nnano.2014.215.
- R.-J. S. X. Gan, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund. “Chip-integrated ultrafast graphene photodetector with high responsivity. ”. Nature Photon., 7:883–887, 2013. doi: 10.1038/nphoton.2013.253.
- M. Z. H. Faezinia. “Quantum modeling of light absorption in graphene based photo-transistors.”. J. Optoelec. Nanostruct., 2:9–20, 2017. doi: 20.1001.1.24237361.2017.2.1.2.6.
- S. Bansal. “Long-wave bilayer graphene/HgCdTe based GBp type-II superlattice unipolar barrier infrared detector.”. Results in Optics, 12, 2023. doi: 10.1016/j.rio.2023.100425.
- T. M. F. Xia, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris. “Ultrafast graphene photodetector.”. Nature Nanotech., 4:839–843, 2009. doi: 10.1038/nnano.2009.292.
- C. Wang, Y. Dong, Z. Lu, S. Chen, K. Xu, Y. Ma, G. Xu, X. Zhao, and Y. Yu. “High responsivity and high-speed 1.55 μm infrared photodetector from self-powered graphene/Si heterojunction.”. Sensors Act. A, 291:87–92, 2019. doi: 10.1016/j.sna.2019.03.054.
- T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, et al. “Strong plasmonic enhancement of photovoltage in graphene.”. Nature Comm., 2:458, 2011. doi: 10.1038/ncomms1464.
- P. K. L. S. Cakmakyapan, A. Navabi, and M. Jarrahi. “Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime.”. Light Sci. Appl., 7:20, 2018. doi: 10.1038/s41377-018-0020-2.
- M. R. M. AlAloul. “Plasmon-enhanced graphene photodetector with CMOS-compatible titanium nitride.”. J. Opt. Soc. Am. B, 38:602–610, 2021. doi: 10.1364/JOSAB.416520.
- M. Z. M. Naghipoor and H. Rasooli Saghai. “Two-color photodetection of graphene-based transistors enhanced by metallic photonic crystals. ”. J. Comput. Electron., 21:953–959, 2022. doi: 10.1007/s10825-022-01886-w.
- K. R. H. S. Choudhary. “Numerical investigation of disordered patch resonator absorbers. ”. App. Phys. A, 125:603, 2019. doi: 10.1007/s00339-019-2904-2.
- S. Fukushima, M. Shimatani, S. Okuda, S. Ogawa, Y. Kanai, T. Ono, K. Inoue, and K. Matsumoto. “Photogating for small high-responsivity graphene middle-wavelength infrared photodetectors. ”. Opt. Eng., 59:037101, 2020. doi: 10.1117/1.OE.59.3.037101.
- S. Fukushima, M. Shimatani, S. Okuda, S. Ogawa, et al. “High responsivity middle-wavelength infrared graphene photodetectors using photo-gating.”. App. Phys. Lett., 113:061102, 2018. doi: 10.1063/1.5039771.
- X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, et al. “Widely tunable black phosphorus mid-infrared photodetector. ”. Nature Comm., 8:1672, 2017. doi: 10.1038/s41467-017-01978-3.
- M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, et al. “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus.”. Sci. Adv., 3, 2017. doi: 10.1126/sciadv.1700589.
- K. P. S. Bansal, K. Sharma, N. Sardana, S. Kumar, N. Gupta, and A. K. Singh. “A highly efficient bilayer graphene/ZnO/silicon nanowire based heterojunction photodetector with broadband spectral response.”. Nanotech., 31:202, 2020. doi: 10.1088/1361-6528/ab9da8.