Magneto-optical Kerr effect in Metasurface Flexible Microarrays by near field excitation
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran. & Department of Laser Physics, College of Science for Women, University of Babylon, Babylon, Iraq.
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.
- Vernadsky Crimean Federal University, 4 Vernadskogo Prospekt, Simferopol, Russia. & Interdisciplinary Scientific and Educational School of Moscow University ≪Photonic and Quantum Technologies, Digital Medicine≫, Lomonosov Moscow State University, Leninskie Gori, Moscow, Russia.
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy Per., Dolgoprudny, Russia.
Received: 2025-03-06
Revised: 2025-03-30
Accepted: 2025-04-06
Published 2025-04-10
Copyright (c) 2025 N. S. Shnan, N. Roostaei, S. M. Hamidi, V. I. Belotelov, A. I. Chernov (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 35
Abstract
We have experimentally examined the effect of light localization and near field effect on the magneto-optical
response of the two-dimensional coupled micro-ring periodic structure. For this purpose, we fabricated
main template by laser writing system and stamped it by polydimethylsiloxane-to reach the main twodimensional
microstructures. Thus, we coated them with a gold layer and Ni layer as plasmonic and magnetic
metasurfaces, respectively. We recorded the spectral magneto-optical longitudinal Kerr effect under 200 mT
and the spectrometer’s response in all visible regions under the normal condition as well as pump and probe
system by the aid of green laser as pump. The pump was done via high numerical aperture objective lens to
excite near field of plasmon in a two-dimensional structure. Our results indicate that the localized surface
plasmon resonance, surface lattice resonance as well as electric and magnetic dipole moments enhance the
magneto-optical response in two closer channels in the middle of visible region.
Keywords
- Two dimensional micro-ring periodic structure,
- Plasmonic metasurfaces,
- Dielectric metasurfaces,
- Magneto-plasmonic,
- Electric and magnetic dipole
References
- K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar. “Efficient polarization-insensitive complex wave front control using Huygens? Metasurfaces based on dielectric resonant meta-atoms. ”. ACS Photonics, 3:514–519, 2016. doi: 10.1021/acsphotonics.5b00678.
- M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso. “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. ”. Science, 352:1190–1194, 2016. doi: 10.1126/science.aaf6644.
- L. Wang, S. Kruk, H. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar. “Grayscale transparent metasurface holograms”. Optica, 3:1504–1505, 2016. doi: 10.1364/OPTICA.3.001504.
- Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine. “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation.”. Nano Lett., 14:1394–1399, 2014. doi: 10.1021/nl4044482.
- K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, et al. “Polarization-independent silicon metadevices for efficient optical wavefront control. ”. Nano Lett., 15:5369–5374, 2015. doi: 10.1021/acs.nanolett.5b01752.
- T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev. “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials.”. Science, 361:1101–1104, 2018. doi: 10.1126/science.aat9042.
- S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon. “Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces.”. Nat. Commun., 7:11618, 2016. doi: 10.1038/ncomms11618.
- S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, et al. “Highly tunable elastic dielectric metasurface lenses.”. Laser Photonics Rev., 10:1002–1008, 2016. doi: 10.1002/lpor.201600144.
- E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie M. Faraji-Dana, and A. Faraon. “MEMS-tunable dielectric metasurface lens. ”. Nat. Commun., 9:812, 2018. doi: 10.1038/s41467-018-03155-6.
- N. S. Shnan, N. Roostaei, and S. M. Hamidi. “Magneto-optical engineering by plasmonic and dielectric metasurfaces in a CoFeB perforated microstructure.”. Journal of the Optical Society of America B, 40:2243–2248, 2023. doi: 10.1364/JOSAB.495443.
- S. Hamidi, H. Goudarzi, and S. Sadeghi. “Surface plasmon resonance magneto-optical Kerr effect in Au/Co/Au magneto-plasmonic multilayer. ”. J. Supercond. Nov. Magn., 28:1565–1569, 2015. doi: 10.1007/s10948-014-2885-5.
- N. S. Shnan, S. Sadeghi, M. Farzaneh, S. M. Hamidi, V. I. Belotelov, and A. I. Chernov. “Longitudinal magneto-optical Kerr effect in insulator/metal/insulator grating structure.”. J. Supercond. Nov. Magn., 35:3397–3401, 2022. doi: 10.1007/s10948-022-06369-4.
- D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H.-U. Habermeier, T. Weiss, and H. Giessen. “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths. ”. Light Sci. Appl., 4:e284–e291, 2015. doi: 10.1038/lsa.2015.57.
- H. Mbarak, S. M. Hamidi, V. I. Belotelov, A. I. Chernov, E. Mohajerani, and Y. Zaatar. “Surface lattice resonance-based magneto-plasmonic switch in NiFe patterned nano-structure.”. J. Magn. Magn. Mater., 517:167387, 2021. doi: 10.1016/j.jmmm.2020.167387.
- B. F. D´ıaz-Valencia, N. Porras-Montenegro, O. N. Oliveira Jr, and J. R. Mej´ıa-Salazar. “Nanostructured hyperbolic metamaterials for magnetoplasmonic sensors.”. ACS Appl. Nano Mater., 5:1740–1744, 2022. doi: 10.1021/acsanm.1c04310.
- S. M. Hamidi, S. Behjati, and F. Sohrabi. “Transverse tunable magneto-plasmonic Kerr effect in large area micro-patterned Au/Co/Au structures.”. J. Supercond. Novel Magn., 31:1465–1473, 2018. doi: 10.1007/s10948-017-4339-3.
- S. M. Hamidi and M. M. Tehranchi. “Longitudinal magneto-optical kerr effect in Ce: YIG thin films incorporating gold nanoparticles.”. Int. J. Opt. Photo., 5:29–34, 2011.
- N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogu´es, J. kerman, and P. Vavassori. “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons. ”. Phys. Rev. Lett., 111:167401, 2013. doi: 10.1103/PhysRevLett.111.167401.
- V. B. Novikov, A. M. Romashkina, D. A. Ezenkova, I. A. Rodionov, K. N. Afanas’ev, A. V. Baryshev, and T. V. Murzina. “Optical effects in magnetoplasmonic crystals based on 1D metal-dielectric lattice.”. J. Opt. Spectros., 128:1481–1486, 2020. doi: 10.1134/S0030400X20090155.
- R. Cichelero, M. A. Oskuei, M. Kataja, S. M. Hamidi, and G. Herranz. “Unexpected large transverse magneto-optic Kerr effect at quasi-normal incidence in magnetoplasmonic crystals.”. JMMM, 476:54, 2018. doi: 10.1016/j.jmmm.2018.12.036.
- A. A. Dotsenko, A. N. Kalish, M. A. Kozhaev, D. O. Ignatyeva, V. G. Achanta, A. K. Zvezdin, and V. I. Belotelov. “Magneto-optical effects in 2D plasmonic gratings with various types of ordering. ”. InAIP Conf. Proc., 2300:020026, 2020.
- A. Andrey Voronov, D. Karki, D. O. Ignatyeva, M. A. Kozhaev, M. Levy, and V. I. Belotelov. “Magneto-optics of subwavelength all-dielectric gratings. ”. Opt. Expr., 28:17988–17996, 2020. doi: 10.1364/OE.394722.
- D. M. Krichevsky, A. N. Kalish, M. A. Kozhaev, D. A. Sylgacheva, A. N. Kuzmichev, S. A. Dagesyan, V. G. Achanta, E. Popova, N. Keller, and V.I. Belotelov. “Enhanced magneto-optical Faraday effect in two-dimensional magnetoplasmonic structures caused by orthogonal plasmonic oscillations. ”. Phys. Rev. B, 102:144408, 2020. doi: 10.1103/PhysRevB.102.144408.
- A. L´opez-Ortega, M. Zapata-Herrera, N. Maccaferri, M. Pancaldi, M. Garcia, A. Chuvilin, and V. Vavassor. “Enhanced magnetic modulation of light polarization exploiting hybridization with multipolar dark plasmons in magnetoplasmonic nanocavities.”. Light: Science & Applications, 9:49, 2020. doi: 10.1038/s41377-020-0285-0.
- S. Manipatruni, L. Chen, and M. Lipson. “Ultra high bandwidth WDM using silicon microring modulators. ”. Optics Express, 18, 2010. doi: 10.1364/OE.18.016858.
- C. Park, V. Shrestha, S. Lee, E. Kim, and D. Choi. “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay.”. Scientific Reports, 5:84675, 2015. doi: 10.1038/srep08467.
- N. S. Shnan, N. Roostaei, and S. M. Hamidi. “Tunable and reversible thermo plasmonic hot spot imaging for temperature confinement.”. Journal of Theoretical and Applied Physics, 14:367–376, 2020. doi: 10.1007/s40094-020-00393-2.