Synthesis of formic acid using anodic plasma electrolysis
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia.
- Department of Research and Innovation Infrastructure-BRIN, Cibinong, Indonesia.
Received: 2025-01-02
Revised: 2025-03-11
Accepted: 2025-04-06
Published 2025-04-10
Copyright (c) 2025 Triana Devi Sijabat, Nelson Saksono, Bening Farawan (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 34
Abstract
Anodic plasma electrolysis, an advanced oxidation process (AOP), is an alternative method for synthesizing
formic acid through the oxidation of methanol, known for producing a high amount of hydroxyl radicals
(OH•). This study aims to synthesize formic acid using anodic plasma electrolysis at a high power setting
of 500 W. In addition, it seeks to determine the effects of applied voltage and air injection flow rates on the
formation of formic acid from methanol and ethanol feedstocks. The experimental setup involved injecting
air through a cathode pipe into the anodic plasma zone in a Na2SO4 electrolyte solution. The process was
conducted in a 1.2-L batch reactor, varying the voltage and air injection flow rates, using methanol and ethanol
as feed materials. The highest yield of formic acid was 5.077 mmol from methanol oxidation and 7.268 mmol
from ethanol oxidation after 45 minutes of reaction time. Optimal results were achieved at an applied voltage
of 680 V, an air injection flow rate of 0.8 Lpm (L/min), a fixed power of 500 W, and a feed concentration of
2% v/v. The primary by-product identified was nitrate (NO−3 ), with 2.093 mmol generated from methanol
oxidation and 2.281 mmol from ethanol oxidation. In addition, the morphology of the eroded stainless steel
electrode revealed a mushroom-like shape with a rough and porous surface.
Keywords
- Anodic plasma electrolysis,
- Formic acid,
- Methanol,
- Air injection,
- Radical OH
References
- X. Liu, S. Li, Y. Liu, and Y. Cao. “Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis. ”. Chinese Journal of Catalysis, 36:1461–1475, 2015. doi: 10.1016/S1872-2067(15)60861-0.
- B. Thijs, J. Rong´e, and J. A. Martens. “Matching emerging formic acid synthesis processes with application requirements. ”. Green Chemistry, 24:2287–2295, 2022. doi: 10.1039/D1GC04791D.
- J. Hietala, A. Vuori, P. Johnsson, I. Pollari, W. Reutemann, and H. Kieczka. “Formic acid. In: Ullmann’s Encyclopedia of Industrial Chemistry.”. Wiley, pages 1–22, 2016. doi: 10.1002/14356007.a12 013.pub3.
- M. Rumayor, A. Dominguez-Ramos, and A. Irabien. “Formic acid manufacture: Carbon dioxide utilization alternatives.”. Applied Radiation and Isotopes, 8, 2018. doi: 10.3390/app8060914.
- M. P´erez-Fortes and E. Tzimas. “Techno-economic and environmental evaluation of CO2 utilisation for fuel production: Synthesis of methanol and formic acid. ”. Synthesis of Methanol and Formic Acid, 2016. doi: 10.2790/981669.
- Q. Zhang, C. F. Lin, Y. H. Jing, and C. T. Chang. “Photocatalytic reduction of carbon dioxide to methanol and formic acid by graphene-TiO2.”. Journal of the Air and Waste Management Association, 64:578–585, 2014. doi: 10.1080/10962247.2013.875958.
- Z. Fang, H. Murayama, Q. Zhao, B. Liu, F. Jiang, Y. Xu, M. Tokunaga, and X. Liu. “Selective mild oxidation of methane to methanol or formic acid on Fe-MOR catalysts.”. Catalysis Science and Technology, 9:6946–6956, 2019. doi: 10.1039/c9cy01640f.
- X. Wei, Y. Li, L. Chen, and J. Shi. “Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation.”. Angewandte Chemie International Edition, 60:3148–3155, 2021. doi: 10.1002/anie.202012066.
- P. Gupta, G. Tenhundfeld, E. Daigle, and D. Ryabkov. “Electrolytic plasma technology: Science and engineering-An overview. ”. Surface and Coatings Technology, 201:8746–8760, 2007. doi: 10.1016/j.surfcoat.2006.11.023.
- M. A. Almubarak and A. Wood. “Chemical action of glow discharge electrolysis on ethanol in aqueous solution.”. ECS, 124, 1977.
- A. Hickling and M. D. Ingram. “Glow-discharge electrolysis. ”. Journal of Electroanalytical Chemistry, 8:65–81, 1964. doi: 10.1016/0022-0728(64)80039-5.
- N. Saksono, P. Suryawinata, Z. Zakaria, and B. Farawan. “Fixation of air nitrogen to ammonia and nitrate using cathodic plasma and anodic plasma in the air plasma electrolysis method.”. Environmental Progress & Sustainable Energy, 43, 2023. doi: 10.1002/ep.14331.
- Y. Ito, T. Munegumi, and K. Harada. “Synthesis of carboxylic acids from alcohols by contact glow discharge with recycling system. ”. Research Journal of Pharmaceutical, Biological and Chemical Science, 4:1811–1818, 2013.
- S. K. S. Gupta and R. Singh. “Cathodic contact glow discharge electrolysis: Its origin and non-faradaic chemical effects.”. Plasma Sources Science and Technology, 26:015005–1–015005–8, 2016.
- S. Bespalko and J. Mizeraczyk. “Overview of the hydrogen production by plasma-driven solution electrolysis.”. Energies, 22:7508, 2022. doi: 10.3390/en15207508.
- S. K. Sengupta, A. K. Srivastava, and R. Singh. “Contact glow discharge electrolysis: a study on its origin in the light of the theory of hydrodynamic instabilities in local solvent vaporisation by Joule heating during electrolysis.”. Journal of Electroanalytical Chemistry, 427:23–27, 1997. doi: 10.1016/S0022-0728(96)05044-9.
- M. Sementilli, R. Zangeneh, and J. Chen. “Influence of cross perturbations on turbulent Kelvin–Helmholtz instability.”. Fluids, 9:52, 2024. doi: 10.3390/fluids9030052.
- Z. C. Yan, C. Li, and W. H. Lin. “Hydrogen generation by glow discharge plasma electrolysis of methanol solutions. ”. International Journal of Hydrogen Energy, 34:48–55, 2009. doi: 10.1016/j.ijhydene.2008.09.099.
- Y. Liu, B. Sun, L. Wang, and D. Wang. “Characteristics of light emission and radicals formed by contact glow discharge electrolysis of an aqueous solution.”. Plasma Chemistry and Plasma Processing, 32:359–368, 2012. doi: 10.1007/s11090-011-9347-7.
- M. Lu, W. Yang, C. Yu, Q. Liu, and D. Ye. “Plasma-catalytic oxidation of toluene on Ag-modified FeOx/SBA-15.”. Aerosol and Air Quality Research, 20:193–202, 2020. doi: 10.4209/aaqr.2019.09.0467.
- D. S. Levko, A. N. Tsymbalyuk, and A. I. Shchedrin. “Plasma kinetics of ethanol conversion in a glow discharge.
- G. da Silva and J. W. Bozzelli. “Role of the α-hydroxyethylperoxy radical in the reactions of acetaldehyde and vinyl alcohol with HO2.”. Chemical Physics Letters, 483:25–29, 2009. doi: 10.1016/j.cplett.2009.10.045.
- J. Heo, J. Lee, S. Kim, A. Alfantazi, and S. O. Cho. “Corrosion resistance of austenitic stainless steel using cathodic plasma electrolytic oxidation. ”. Surface and Coatings Technology, 462, 2023. doi: 10.1016/j.surfcoat.2023.129448.
- J. R. Davis. “Stainless steels.”. ASM International Handbook Committee, 1994.
- N. Saksono, H. Harianingsih, B. Farawan, V. Luvita, and Z. Zakaria. “Reaction pathway of nitrate and ammonia formation in the plasma electrolysis process with nitrogen and oxygen gas injection. ”. Journal of Applied Electrochemistry, 53:1183–91, 2023. doi: 10.1007/s10800-023-01849-4.
- R. Kleerebezem and S. L¨ucker. “Cyclic conversions in the nitrogen cycle.”. Frontiers in Microbiology, 12:622504, 2021. doi: 10.3389/fmicb.2021.622504.