Impact of applied voltage on different electrode gap for the generation of ozone
- Department of Physics, Patan Multiple Campus, Tribhuvan University, Lalitpur, Nepal.
- Department of Physics, Patan Multiple Campus, Tribhuvan University, Lalitpur, Nepal. & Padma Kanya Campus, Bagbazar, Kathmandu, Nepal.
- Department of Physics, Patan Multiple Campus, Tribhuvan University, Lalitpur, Nepal. & Department of Physics, Nepal Banepa Polytechnic Institute, Banepa, Kavre, Nepal.
- Department of Physics, Patan Multiple Campus, Tribhuvan University, Lalitpur, Nepal. & Central Department of Physics, Tribhuvan University, Kirtipur, Nepal.
- Central Department of Physics, Tribhuvan University, Kirtipur, Nepal.
Received: 2025-01-31
Revised: 2025-03-25
Accepted: 2025-04-03
Published 2025-04-10
Copyright (c) 2025 Arun Kumar Shah, Ram Lal Sah, Rajendra Shrestha, Bablu Kant Thakur, Saddam Husain Dhobi, Jeevan Jyoti Nakarmi, Lekha Nath Mishra (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 25
Abstract
This study investigates the influence of applied voltage and electrode gap on the efficiency of ozone generation in a plasma-based system. Ozone, as a strong oxidizing agent, plays a critical role in various industrial applications, including air and water purification. The objective of this research was to analyze the relationship between applied voltage, electrode gap, and ozone production efficiency. Discharges have been characterized with electrical methods. A plasma discharge system was constructed with electrode gap distances of 0.5 mm, 1.0 mm, and 1.5 mm. The applied voltage was varied between 9.38 kV and 17.20 kV at intervals of thirty seconds. The findings revealed a positive correlation between applied voltage and ozone concentration, with higher voltages leading to increased ozone production. Specifically, ozone concentrations ranged from 99 ppm to 786 ppm for a 0.5 mm gap, 56 ppm to 555 ppm for a 1.0 mm gap, and 20 ppm to 395 ppm for a 1.5 mm gap. The result further demonstrated that ozone production decreases as the electrode gap widens, highlighting the impact of electrode gap distance on ozone generation. Additionally, non-linear trends were observed, where ozone concentration increased moderately with smaller voltage changes and more significantly with higher voltage increments.
Keywords
- Ozone production,
- Applied voltage,
- Electrode gap distance,
- Plasma-based systems,
- Ozone generation efficiency
References
- H. Jakob. “Development of scalable and exible non-thermal Dielectric Barrier Discharge systems for novel low-temperature plasma applications. ”. Doctoral dissertation, University of Southampton, 2022. URL https://www.researchgate.net/publication/367127689 Development of scalable andf lexible non thermal Dielectric Barrier Discharge systems f or novel low − temperature plasma applications.
- P. Vanraes, A. Nikiforov, A. Bogaerts, and C. Leys. “Study of an AC dielectric barrier single micro-discharge filament over a water film. ”. Scientific Reports, 8(1):10919, 2018. URL https://www.nature.com/articles/s41598-018-29189-w.
- A. Barjasteh, Z. Dehghani, P. Lamichhane, N. Kaushik, E. H. Choi, and N. K. Kaushik. “Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination.”. Applied Sciences, 11(8):3372, 2021. doi: 10.3390/app11083372.
- B. Bharti, H. Li, Z. Ren, R. Zhu, and Z. Zhu. “Recent advances in sterilization and disinfection technology: A review.”. Applied Radiation and Isotopes, 308:136404, 2022. doi: 10.1016/j.chemosphere.2022.136404.
- A. Mizuno. “Industrial applications of atmospheric non-thermal plasma in environmental remediation. ”. Plasma Physics and Controlled Fusion, 49:A1, 2007. doi: 10.1007/s41742-024-00685-4.
- C. O. R. Okpala, G. Bono, A. Abdulkadir, and C. U. Madumelu. “Ozone (O3) process technology (OPT): An exploratory brief of minimal ozone discharge applied to shrimp product.”. Energy Procedia, 75:2427–2435, 2015. doi: 10.1016/j.egypro.2015.07.206.
- M. Manna and S. Sen. “Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. ”. Environmental Science and Pollution Research, 30(10):25477–25505, 2023. doi: 10.1007/s11356-022-19435-0.
- R. M. Pathak, A. Jayanarasimhan, S. Nandi, and L. Rao. “Investigating flow-induced changes in coaxial cylindrical dielectric barrier discharge using equivalent circuit modelling and chemical workbench simulations”. Plasma Chem Plasma Process, 2024. doi: 10.21203/rs.3.rs-4613797/v1.
- J. Mikeˇs, S. Pek´arek, and O. Hanuˇs. “Combined effects of electrode geometry and airflow streamlines patterns on ozone production of a cylindrical dielectric barrier discharge. ”. Electrochemistry Communications, 172:107873, 2025. doi: 10.1016/j.elecom.2025.107873.
- M. Gromov, Y. Gorbanev, E. Vervloessem, R. Morent, R. Snyders, N. De Geyter, and A. Nikiforov. “Electrification of fertilizer production via plasma-based nitrogen fixation: A tutorial on fundamentals.”. RSC Sustainability, 3:757, 2025. doi: 10.1039/D4SU00726C.
- D. Korzec, F. Freund, C. B¨auml, P. Penzkofer, and S. Nettesheim. “Hybrid dielectric barrier discharge reactor: Characterization for ozone production. ”. Plasma, 7:585–615, 2024. doi: 10.3390/plasma7030031.
- C. Liang, Z. Liu, B. Sun, H. Zou, and G. Chu. “Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor.”. Chinese Journal of Chemical Engineering, 60:61–68, 2023. doi: 10.1016/j.cjche.2022.11.016.
- K. M. Ahmed, A. S. Barakat, M. Badawi, S. A. Ward, W. H. Gaber, and M. M. Darwish. “Ozone generation using high voltage atmospheric-pressure DBD reactor for sterilization processes. ”. 24th International Middle East Power System Conference (MEPCON), pages 1–6, 2023. doi: 10.1109/MEPCON58725.2023.10462426.
- G. P. Panta, H. B. Baniya, S. Dhungana, D. P. Subedi, and A. Papadaki. “Ozone production in cylindrical Co-axial double dielectric Barrier discharge ozone generator.”. Walailak Journal of Science and Technology (WJST), 18:9856–10, 2021. doi: 10.48048/wjst.2021.9856.
- X. Gou, D. Yuan, L. Wang, L. Xie, L. Wei, and G. Zhang. “Enhancing ozone production in dielectric barrier discharge utilizing water as electrode. ”. Vacuum, 212:102–112, 2023. doi: 10.1016/j.vacuum.2023.112047.
- R. Engeln, B. Klarenaar, and O. Guaitella. “Foundations of optical diagnostics in low temperature plasmas.”. Plasma Sources Science and Technology, 29:063001, 2020. doi: 10.1088/1361-6595/ab6880/meta.
- Environmental Protection Agency. “Wastewater technology fact sheet ozone disinfection.”. Journal of Inorganic and Organometallic Polymers and Materials, 2023. URL https://www3.epa.gov/npdes/pubs/ozon.pdf.
- M. Remondino and L. Valdenassi. “Different uses of ozone: Environmental and corporate sustainability. Literature review and case study. ”. Sustainability, 10:4783, 2018. doi: 10.3390/su10124783.
- A. C. Babu and A. Jacob. “Chemistry of ozone processing. ”. Chemistry of Thermal and Non-Thermal Food Processing Technologies, pages 289–311, 2025. doi: 10.1016/b978-0-443-22182-8.00014-0.
- M. Mahmoodi and E. Pishbin. “Ozone-based advanced oxidation processes in water treatment: recent advances, challenges, and perspective.
- R. Snoeckx and A. Bogaerts. “Plasma technology-a novel solution for CO2 conversion?”. Chemical Society Reviews, 46:5805–5863, 2017. doi: 10.1039/C6CS00066E.
- R. Shrestha, U. M. Joshi, and D. P. Subedi. “Experimental study of ozone generation by atmospheric pressure dielectric barrier discharge. ”. International Journal of Recent Research and Review, 8:24–30, 2015. URL https://www.ijrrr.com/papers8-4/paper4-Experimental.
- P. B. Khadka, S. Sharma, Y. P. Basel, G. Acharya, R. Shrestha, and D. P. Subedi. “Electrical and optical characterization of atmospheric pressure Co-axial dielectric barrier discharge (APDBD) used for ozone generation.”. Journal of Emerging Technologies and Innovative Research, 6:93–94, 2019. URL https://www.researchgate.net/profile/Rajendra-Shrestha/publication/334836033 Electrical and Optical Characterization of Atmospheric Pressure Co-axial Dielectric Barrier Discharge APDBD Used for Ozone Generation/links/5d42e0a5299bf1995b5bf349/Electrical-and-Optical-Characterization-of-At
- A. Yehia. “Consumption of the electric power inside silent discharge reactors. ”. Physics of Plasmas, 22:1–8, 2015. doi: 10.1063/1.4905708.
- T. C. Manley. “The electric characteristics of the ozonator discharge.”. Transactions of The Electrochemical Society, 84:1–6, 1943. doi: 10.1149/1.3071556.
- L. Vaduganathan, B. A. Poonamallie, and M. Nagalingam. “Effects of temperature and flow rates of ozone generator on the DBD by varying various electrical parameters. ”. American Journal of Applied Sciences, 9:1496–1502, 2012. doi: 10.3844/ajassp.2012.1496.1502.
- D. P. Subedi, R. P. Guragain, and U. M. Joshi. “Surface modification of polymers by 50 Hz dielectric barrier discharge (DBD) plasma produced in air at 40 Torr.”. Fundamental Plasma Physics, 10:100058, 2024. doi: 10.1016/j.fpp.2024.100058.
- D. P. Subedi, U. M. Joshi, C. S. Wong, and R. S. Rawat. “Dielectric barrier discharge (DBD) plasmas and their applications. In: Plasma Science and Technology for Emerging Economies. ”. Fusion Science and Technology, pages 693–737, 2017. doi: 10.1007/978-981-10-4217-1 13.
- R. B. Tyata, D. P. Subedi, R. Shrestha, and C. S. Wong. “Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge.”. Pramana - Journal of Physics, 80:507, 2013. doi: 10.1007/s12043-012-0494-z.