10.57647/j.jtap.2025.1902.19

First study on lattice potential energy determination from ultrasonic mean sound velocity for polycrystalline Ca1+xCu3-xTi4O12 perovskites and mono-crystalline counterparts

  1. Department of Physics, Saurashtra University, Rajkot, India.
  2. Department of Toy Innovation, Centre of Toy Science, Children’s Research University, Gandhinagar, India.

Received: 2024-11-27

Revised: 2025-02-06

Accepted: 2025-04-02

Published 2025-04-10

How to Cite

1.
J. Parekh D, K. Thummar D, S. Kanani N, H. Vasoya N, B. Modi K. First study on lattice potential energy determination from ultrasonic mean sound velocity for polycrystalline Ca1+xCu3-xTi4O12 perovskites and mono-crystalline counterparts. J Theor Appl phys. 2025 Apr. 10;19(2 (April 2025):1-10. Available from: https://oiccpress.com/jtap/article/view/16589

PDF views: 24

Abstract

For the first time the lattice energies (ULP) for multi-crystalline specimens of perovskite system, Ca1+xCu3−xTi4O12 with x = 0.0−1.0, have been calculated using mean sound velocity data by employing Kudriavtsav’s approach. The observed decrease in ULP as a function of Ca2+ substitution has been described considering the structural and microstructural parameters. Using four different estimation models lattice energy (ULS) values for mono–crystalline counterparts have been calculated. The difference between ULP and ULS (ULS >ULP) has been discussed based on grain boundary and grain contribution and the existence of voids and micro-cracks in multi-crystalline ceramics. A straightforward method proposed to determine ULS for multi-cationic oxide systems founded on the oxide additivity rule was adequate.

Keywords

  • Lattice potential energy,
  • Ultrasonic mean sound velocity,
  • Structural and microstructural parameters,
  • Oxide additivity rule

References

  1. D. V. Barad, U. M. Meshiya, N. P. Joshi, P. L. Mange, P. Y. Raval, S. Kumar, et al. “Cation distribution and magnetic ordering evolution study on Ca1+xCu3−xTi4O12 (x = 0.0–0.2) perovskites. ”. Solid State Sci., 99:106070, 2020. doi: 10.1016/j.solidstatesciences.2019.106070.
  2. D. V. Barad, P. L. Mange, K. K. Jani, S. Mukherjee, M. Ahmed, S. Kumar, et al. “Ca2+- substitution effect on the defect structural changes in the quadruple perovskite series Ca1+xCu3−xTi4O12 studied by positron annihilation and complementary methods. ”. Ceram. Int., 47:2631–2640, 2021. doi:
  3. 1016/j.ceramint.2020.09.110.
  4. P. Y. Raval, S. K. Modi, D. J. Parekh, N. P. Joshi, U. M. Meshiya, and K. B. Modi. “Enhancement in mechanical strength of Slow-Cooled quadruple perovskite CaCu3Ti4O12 by microwave-assisted heating, and rapid thermal cooling process.”. Asian J. Adv. Res., 17(1):14, 2022. doi: 10.1088/1674-4926/43/3/032001.
  5. D. J. Parekh, D. V. Barad, N. S. Kanani, D. K. Thummar, and K. B. Modi. “Influence of Ca2+- substitution on elastic properties of CaCu3Ti4O12 quadruple perovskite determined by ultrasonic pulse echo selection technique.”. Applied Radiation and Isotopes, 60:614–635, 2024. doi: 10.1134/S1061830924601545.
  6. T. Waddington. “Lattice energies and their significance in inorganic chemistry. ”. Advances in Inorganic Chemistry, 1:157–221, 1959. doi: 10.1016/S0065-2792(08)60254-X.
  7. A. F. Kapustinski. “Lattice energy of ionic crystals.”. Quart. Rev. Chem. Soc., 10:455–628, 1971.
  8. H. D. B. Jenkins, D. Tudela, and L. Glasser. “Lattice potential energy estimation for complex ionic salts from density measurements.”. Inorg Chem., 41:2364–2367, 2002. doi: 10.1021/ic011216k.
  9. L. Mu, C. Feng, and H. He. “Topological research on lattice energies for inorganic compounds. ”. MATCH Commun Math Comput Chem., 56:97–111, 2006. doi: 10.1088/2516-1067/ab9d72.
  10. L. Glasser and H. D. B. Jenkins. “Ionic HydratesMpXq·nH2O: Lattice energy and standard enthalpy of formation estimation. ”. Inorg. Chem., 122:632–638, 2000. doi: 10.1021/ic020222t.
  11. S. Kaya and C. Kaya. “A simple method for the calculation of lattice energies of inorganic ionic crystals based on the chemical hardness.”. Inorg. Chem., 54:8207–8213, 2015. doi: 10.1021/acs.inorgchem.5b00383.
  12. R. D. Shanon and G. R. Rossman. “Dielectric constants of silicate garnets and the oxide additivity rule. ”. Am. Min., 77:94–100, 1992.
  13. A. K. Pandey, C. K. Dixit, and S. Srivastava. “Theoretical model for the prediction of lattice energy of diatomic metal halides.”. J. Maths. Chem., 62:269–274, 2024. doi: 10.1007/s10910-023-01538-9.
  14. D. Liu, S. Zang, and Z. Wu. “Lattice energy estimation for inorganic ionic crystals. ”. Inorg. Chem., 42:2465–2469, 2000. doi: 10.1021/ic025902a.
  15. S. Range, C. E. S. Bernardes, R. G. Simoes, M. Epple, and M. E. Minas de Piedade. “Size matters: An experimental and computational study of the influence of particle size on the lattice energy of NaCl.”. J. Phys. Chem. C., 199:4387–4396, 2015. doi: 10.1021/jp5124772.
  16. S. Range, C. E. S. Bernardes, R. G. Simoes, M. Epple, and M. E. Minas de Piedade. “Size matters: An experimental and computational study of the influence of particle size on the lattice energy of NaCl.”. J. Phys. Chem. C., 199:4387–4396, 2015. doi: 10.1021/jp5124772.
  17. M. R. Levy. “Crystal structure and defect property predictions in ceramic materials.”. Imperial College, pages 79–144, 2005.
  18. K. B. Modi. “Lattice energy determination for polycrystalline oxide ceramics and single-crystalline counterparts. ”. J. Supercond. Nov. Magn., 29:2287–2297, 2016. doi: 10.1007/s10948-016-3591-2.
  19. P. Zang, Y. Zhao, and W. Haito. “Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr (Nb1−xAx)2O8 (A = Ta, Sb) ceramics. ”. Dalton. Trans., 44:16684–16693, 2015. doi: 10.1039/C5DT02164B.
  20. P. Zhang, Y. Zhao, and X. Wang. “The relationship between bond ionicity, lattice energy, coefficient of thermal expansion and microwave dielectric properties of Nb (Nb1−xSbx)O4 ceramics.”. Dalton Trans., 44:10932–10938, 2015. doi: 10.1039/C5DT01343G.
  21. M. Xiao, H. Sun, Z. Zhou, and P. Zhang. “Bond ionicity, lattice energy, bond energy, and microwave dielectric properties of Ca1−xSrxWO4 ceramics.”. Ceram. Int., 44:20686–20691, 2018. doi: 10.1016/j.ceramint.2018.08.062.
  22. M. Xiao, Y. Wei, Q. Gu, Z. Zhou, and P. Zhang. “Relationships between bond ionicity, lattice energy, bond energy and the microwave dielectric properties of La(Nb1−xTax)O4 (x = 0 − 0.10) ceramics.”. J. Alloys Compd., 775:167–174, 2019. doi: 10.1016/j.jallcom.2018.09.304.
  23. M. Xiao, S. He, J. Meng, and P. Zhang. “Bond ionicity, lattice energy, bond energy and the microwave dielectric properties.”. Mater. Chem. Phys., 242:122412, 2019. doi: 10.1016/j.matchemphys.2019.122412.
  24. P. Zhang, Y. Zhao, and L. Li. “The correlations among bond ionicity, lattice energy and microwave dielectric properties of (Nd1−xLax)NbO4 ceramics. ”. Phys. Chem. Chem. Phys., 17:16692–16698, 2015. doi: 10.1039/C5CP02204E.
  25. M. Xiao, Y. Wei, Q. Gu, and P. Zhang. “The relationship between the bond ionicity, lattice energy, bond energy and microwave dielectric properties of LaNbO4 ceramics.”. J Mater Sci Mater Electro, 9:9963–9970, 2018. doi: 10.1007/s10854-018-9038-8.
  26. X-Q. Song, W-Z. Lu, Y-H. Lou, T. Chen, S-W. Ta, Z-X. Fu, and W. Lei. “Synthesis, lattice energy and microwave dielectric properties of BaCu2−xCoxSi2O7 ceramics. ”. J. Euro. Ceram. Soc., 40:3035–3041, 2020. doi: 10.1016/j.jeurceramsoc.2020.02.048.
  27. Y. Chen, S. Zhang, H. Yang, Y. Yuan, and E. Li. “Bond ionicity, lattice energy and structural evolution of Ta substituted 0.15ZnO-0.15Nb2O5-0.55TiO2 dielectric ceramics.”. Ceram. Int., 45:8832–8839, 2019. doi: 10.1016/j.ceramint.2019.01.210.
  28. X-Q. Song, W-Z. Lu, Y-H. Zou, T. Chen, S-W. Ta, Z-X. Fu, and W. Lei. “Crystal structure, lattice energy and microwave dielectric properties of melilite-type Ba1−xSrxCu2Si2O7 solid solutions.”. J. Alloys Compd., 835:155340, 2020. doi: 10.1016/j.jallcom.2020.155340.
  29. L. Huang, Y. Li, F. Meng, L. Guo, Y. Liamg, Le. Zhang, X. Chen, B. Feng, K. Chen, Q. Zhang, L. Gu, J. Liu, and J. Zhu. “Disorder-insensitivity of room temperature gint permittivity in Ca4−xCuxTi4O12 (x = 3 , 2, and 1) polycrystalline ceramics. ”. J. Appl. Phys., 126(6):224102, 2019. doi: 10.1063/1.5126348.
  30. M. A. Ramirez, P. R. Bueno, E. Longo, and J. A. Varela. “Conventional and microwave sintering of CaCu2Ti4O12/CaTiO3 ceramic composites, non-ohmic and dielectric properties. ”. J. Phys. D.: Appl. Phys., 41:152004, 2008. doi: 10.1088/0022-3727/41/5/152004.
  31. K. K. Jani, D. V. Barad, P. Y. Raval, M. Nehra, N. H. Vasoya, N. Jakhar, et al. “Ca2+- substitution effect on the electronic structure of CaCu3Ti4O12 studied by electron spectroscopy for chemical analysis.”. Ceram Int., 47:5542–5548, 2021. doi: 10.1016/j.ceramint.2020.10.138.
  32. B. R. Reddy and N. Harikumar. “Effect of Bi2O3 and sintering temperature on the ultrasonic properties of Mn-Zn Ferrite. ”. Int. J. Sci. Res., 3:1820, 2014.
  33. V. K. Lakhani and K. B. Modi. “Al3+ modified elastic properties of copper ferrites.”. Solid State Sci., 12:2134–2143, 2010. doi: 10.1016/j.solidstatesciences.2010.09.012.
  34. P. U. Sharma and K. B. Modi. “Effect of Fe3+ substitution on elastic properties of yttrium iron garnet.”. Phys. Scr., 81:015601, 2010. doi: 10.1088/0031-8949/81/01/015601.
  35. B. B. Kudriastev. “Lattice energy determination for polycrystalline oxide ceramics and single-crystalline counterparts”. Applied Radiation and Isotopes, 29:2287–2297, 1956. doi: 10.1007/s10948-016-3591-2.
  36. K. B. Modi, S. J. Shah, T. K. Pathak, N. H. Vasoya, V. K. Lakhani, and A. K. Yahya. “Improvement in elastic properties of CuAl0.4Fe1.6O4 spinel.”. AIP Conf. Proc., 1591:1115–1117, 2014. doi: 10.1063/1.4872872.
  37. K. B. Modi, S. J. Shah, N. B. Pujara, T. K. Pathak, N. H. Vasoya, and I. G. Jhala. “Infrared spectral evolution, elastic, optical and thermodynamic properties study on mechanically milled Ni0.5Zn0.5Fe2O4 spinel ferrite.”. J. Mol. Struc., 1049:250–262, 2013. doi: 10.1016/j.molstruc.2013.06.051.
  38. J. J. U. Buch, G. Lalitha, T. K. Pathak, N. H. Vasoya, V. K. Lakhani, P. V. Reddy, et al. “Structural and elastic properties of Ca-substituted LaMnO3 at 300 K.”. J. Phys. D Appl. Phys., 41:025406, 2008. doi: 10.1088/0022-3727/41/2/025406.
  39. M. B. Solunke, K. B. Modi, V. K. Lakhani, K. B. Zankat, P. U. Sharma, P. V. Reddy, et al. “Effect of Ag+-addition on elastic behaviour of Bi-2212 superconductors. ”. Ind. J. Pure Appl. Phys., 45:764–766, 2007. URL http://nopr.niscpr.res.in/handle/123456789/2665.
  40. R. Rajmi, A. K. Yahya, and M. I. M. Yusuf. “Effect of MgTiO3 Doping on Dielectric and Elasticity Properties of CaCu3Ti4O12. ”. Aust J Basic Appl Sci., 5:405–416, 2011.
  41. F. de Boer, J. H. van Santen, and E. J. W. Verway. “The electrostatic contribution to the lattice energy of some ordered spinels.”. J. Chem. Phys., 18:1032, 1950. doi: 10.1063/1.1747852.
  42. G. C. Mather, M. S. Islam, and F. M. Figueiredu. “Atomistic study of a CaTiO3-based mixed conductor: Defects, nanoscale clusters, and oxide-ion migration. ”. Adv. Funct. Mater., 17:905–912, 2007. doi: 10.1002/adfm.200600632.
  43. H. Donnerberg and C. R. A. Catlow. “Atomistic computer simulations of yttrium iron garnet (YIG) as an approach to materials defect.”. J. Phys. Cond. Matter., 5:2947–2960, 1993. doi: 10.1088/0953-8984/5/18/017.
  44. R. M. Dreizler and E. K. U. Gross. “Density Function Theory. ”. Springer, pages 245–271, 1990. doi: 10.1007/978-3-642-86105-5 8.
  45. P. K. Chattaraj, S. Giri, and S. J. Duley. “Aromaticity and conceptual density functional theory.”. Applied Radiation and Isotopes, 1:1064, 2010. doi: 10.1039/9781849732789-00045.
  46. W. D. Callister. “Materials science and engineering: an introduction. ”. Springer, 80, 2000. doi: 10.1557/PROC-760-JJ6.1.
  47. F. Mikailzade, F. ¨Onal, M. Maksutoglu, M. Zarbali, and A. Goktas. “Structure and magnetization of polycrystalline La0.66Ca0.33MnO3 and La0.66Ba0.33MnO3 films prepared using Sol-Gel technique.”. J. Supercond. Nov. Magn, 31:4141–4145, 2018. doi: 10.1007/s10948-018-4683-y.
  48. M. Shi, S. Ma, W. Xia, Y. Wang, J. Yu, and H. Wu. “Effect of oxygen vacancy on bond iconicity , lattice energy , and microwave dielectric properties of CeO2 ceramics with Yb3+ substitution.”. J. Adv. Ceram., 13:247–254, 2024. doi: 10.26599/JAC.2024.9220848.
  49. A. Goktas, I. H. Mutlu, and A. Kawashi. “Growth and characterization of La1−xAxMnO3 (A = Ag and K, x = 0.33) epitaxial and polycrystalline manganite thin films derived by sol–gel dip-coating technique. ”. Thin Solid Films, 520:6138–6144, 2012. doi: 10.1016/j.tsf.2012.06.006.