skip to main content
Menu
Original Article

The Ediacaran-Cambrian Radiation of Animals within the Villuercas-Ibores-Jara UNESCO Global Geopark, Spain

Authors

Abstract

Across the Ediacaran to Cambrian transition, some 541 Ma, the Earth’s biosphere changed from one dominated by microbial organisms to one where multicellular organisms, including animals, rose to importance. Within a few tens of millions of years into the Cambrian Period an array of animal groups appeared, some extinct and others ancestral to modern groups, the Cambrian “explosion”. Two key elements were the appearance of biomineralized hard parts and the rise of animal disturbance of the sea floor (bioturbation), which continued into the great Ordovician biodiversification event (GOBE). These events are well documented in the Villuercas-Ibores-Jara UNESCO Global Geopark (UGG) by trace fossils, carbonaceous compression fossils and fossils of some of the earliest skeletonized animals record. Simple to more complex trace fossils are evidence of the “Cambrian substrate revolution”. Among carbonaceous compressions, sabelliditids provide evidence of tubular animals and vendotaenids possibly of algae. In addition, Villuercas-Ibores-Jara is the only UNESCO Global Geopark with Cloudina, the first described and best-known of the pioneering organisms in the acquisition of skeletons.  Geosites, geological itineraries and interpretation centers in the geopark show visitors these exceptional fossils, including the holotype of Cloudina carinata.
Trace fossils, carbonaceous compression fossils and fossils of some of the earliest skeletonized animals witnesses these two events within the Villuercas-Ibores-Jara UNESCO Global Geopark. Simple to more complex trace fossils are evidence of the so called “Cambrian substrate revolution”. Among carbonaceous compressions, sabelliditids provide evidence of tubular animals and vendotaenids possibly of algae. In addition, Villuercas-Ibores-Jara is the only UNESCO Global Geopark with Cloudina, the first described and the most well known of the pioneering organisms in the acquisition of skeletons.
Geosites, geological itineraries and interpretation centres in the geopark show the visitors these exceptional fossils, including the holotype of Cloudina carinata, which provide vivid evidence of time that marked the beginning of life on our planet as we know it today.

Read the full text of the article

Keywords

Main Subjects

References

Adôrno RR, Walde DHG, Erdtmann BD, Denezine M, Cortijo I, Carmo DAD, Giorgioni M, Ramos MEAF & Fazio G (2019). First occurrence of Cloudina carinata Cortijo et al., 2010 in South America, Tamengo Formation, Corumbá Group, upper Ediacaran of Midwestern. Estudios Geológicos. 75(2): e095.
Álvaro JJ, Cortijo I, Jensen Lorenzo S& Pieren AP (2019). Updated stratigraphic framework and biota of the Ediacaran and Terreneuvian in the Alcudia-Toledo Mountains of the Central Iberian Zone, Spain. Estudios Geológicos. 75(2): e093.
 Álvaro JJ, Cortijo I, Jensen S, Mus MM & Palacios T (2020). Cloudina-microbial reef resilience to substrate instability in a Cadomian retro-arc basin of the Iberian Peninsula. Precambrian Research. 336: 105479.
 Becker-Kerber B, Pacheco MLAF, Rudnitzki ID, Galante D, Rodrigues F & de Moraes Leme J (2017). Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization. Scientific Reports. 7:1–11.
 Bengtson S& Zhao Y (1992). Predatorial borings in late Precambrian mineralized exoskeletons. Nature. 257:367369.
 Budd GE & Jensen S (2017). The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biological Reviews. 92:446–473.
Cai Y, Hua H, Schiffbauer JD, Sun B & Yuan X (2014). Tube growth patterns and microbial mat-related lifestyles in the Ediacaran fossil Cloudina, Gaojiashan Lagerstätte, South China. Gondwana Research 25:1008–1018.
Cappellen PVB (2003). Biogeochemical And Global Cycles. Reviews in Mineralogy and Geochemistry. 54:357–381.
Cohen, KM, Finney, SC, Gibbard, PL & Fan J-X (2013; updated). The ICS International Chronostratigraphic Chart. Episodes. 36: 199-204; v 2020/03.
Cortijo I, Martí Mus M, Jensen S, & Palacios T (2010a). A new species of Cloudina from the terminal Ediacaran of Spain. Precambrian Research. 176:1–10.
Cortijo I, Palacios T, Jensen S& Martí Mus M (2010b). Yacimientos excepcionales en Extremadura de los primeros metazoos mineralizados del Ediacárico. In Una visión multidisciplinar del patrimonio geológico y minero (pp. 63–73). Madrid: IGME.
Cortijo I, Martí Mus M, Jensen S& Palacios T (2015a). Late Ediacaran skeletal body fossil assemblage from the Navalpino anticline, central Spain. Precambrian Research. 267:186–195.
Cortijo I, Cai Y, Hua H, Schiffbauer JD & Xiao S (2015b). Life history and autecology of an Ediacaran index fossil: Development and dispersal of Cloudina. Gondwana Research. 28:419–424.
Cui H, Kaufman AJ, Xiao S, Grazhdankin DV, Peek S, Martin AJ, Bykova NV, Rogov VI, Liu XM, Zhang F, Romaniello SJ, Anbar AD, Peng Y, Cai Y, Schiffbauer JD, Meyer M, Gilleaudeau GJ, Plummer RE, Sievers NE, Goderis S & Claeys P (2019). Recent advances in understanding the terminal Ediacaran Earth-life system in South China and Arctic Siberia. Estudios Geológicos. 75(2): e097.
Darroch SAF, Smith EF, Laflamme M, Erwin DH (2018). Ediacaran extinction and Cambrian explosion. Trends in Ecology and Evolution. 33:653–663.
Darroch SAF, Cribb AT, Buatois LA, Germs GJB, Kenchington CG, Smith EF, Mocke H, O’Neil GR, Schiffbauer JD, Maloney KM, Racicot RA, Turk KA, Gibson BM, Almond J, Koester B, Boag TH, Tweedt SM & Laflamme M (2021). The trace fossil record of the Nama Group, Namibia: exploring the terminal Ediacaran roots of the Cambrian explosion. Earth-Science Reviews. 212: 103435.
Dunn FS, Liu AG & Donoghue DJC (2018). Ediacaran developmental biology. Biological Reviews. 93:914–932.
Fedonkin MA, Gehling JG, Grey K, Narbonne GM & Vickers-Rich P (2007). The Rise of Animals. Evolution and Diversification of the Kingdom Animalia. Baltimore: The Johns Hopkins University Press.
Grant SWF (1990). Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science. 290–A:261–294.
Grotzinger JP, Adams EW& Schröder S (2005). Microbial–metazoan reefs of the terminal Proterozoic Nama Group (c. 550–543 Ma), Namibia. Geological Magazine. 142:499–517.
Halverson G, Porter S & Shields G (2020). The Tonian and Cryogenian Periods. In The Geologic Time Scale (pp 495–520). Elsevier.
Herringshaw LG, Callow RHT & McIlroy D (2017). Engineering the Cambrian explosion: the earliest bioturbators as ecosystem engineers. In Earth System Evolution and Early Life: a Celebration of the work of Martin Brasier (pp 369–382). London: Geological Society London, Special Publication 448.
Hofmann HJ & Mountjoy EW (2001). Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada’s oldest shelly fossils. Geology. 29: 1091–1094.
Hua H, Pratt BR & Zhang L-Y (2003). Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic. Palaios. 18: 454–459.
Linnemann U, Ovtcharova M, Schaltegger U, Gärtner A, HautmannM, Geyer G, Vickers‐Rich P, RichT, Plessen B, Hofmann M, Zieger J, Krause R, Kriesfeld L & Smith J (2019). New high-resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion. Terra Nova. 31: 49–58. 
Jensen S & Palacios T (2016). The Ediacaran-Cambrian trace fossil record in the Central Iberian Zone, Iberian Peninsula. Comunicacoes Geologicas. 103(Especial I): 83–92.
 Jensen S, Álvaro JJ& Palacios T (2019). Pre-conference fieldtrip, October 17–18, 2019: Ediacaran, Lower Palaeozoic and landscapes within the Villuercas-Ibores-Jara UNESCO Global Geopark. Estudios Geológicos. 75(2): e120.
 Jensen S, Palacios T& Martí Mus M (2007). A brief review of the fossil record of the Ediacaran–Cambrian transition in the area of Montes de Toledo–Guadalupe, Spain. In The Rise and Fall of the Ediacaran Biota, (vol. 286, pp 223–235). London: Geological Society, London.
 Knoll AH, Walter MR, Narbonne GM& Christie-Blick N (2006). The Ediacaran Period: a new addition to the geologic time scale. Lethaia. 39:13–30.
 Mángano MG & Buatois LA (2020). The rise and early evolution of animals: where do we stand from a trace-fossil perspective. Interface Focus. 10: 20190103.
 Meysman FJR, Middelbur JJ & Heip CHR (2008). Bioturbation: a fresh look at Darwin’s last idea. Trends in Ecology and Evolution. 21: 688–695.
 Moczydłowska M, Westall F & Foucher F (2014). Microstructure and biogeochemistry of the organically preserved Ediacaran metazoan Sabellidites. Journal of Paleontology. 88:224–239.
 Muscente AD, Boag TH, Bykova N & Schiffbauer JD (2018). Environmental disturbance, resource availability, and biological turnover at the dawn of animal life. Earth-Science Reviews. 177:248–264.
Neto de Carvalho C, Baucon A, Cortijo I, Jensen S, Barrera JM & Caballero JL (2021). Daedalus Mega-ichnosites: The Armorican Quartzite Bridge between Villuercas-Ibores-Jara and Naturtejo UNESCO Global Geoparks. Geoconservation Research. 4(1):***.
 Penny AM, Wood R, Curtis A, Bowyer F, Tostevin R & Hoffman KH (2014). Ediacaran metazoan reefs from the Nama Group, Namibia. Science. 344:1504–1506.
Peters SE & Gaines RR (2012). Formation of the ‘Great Unconformity’as a trigger for the Cambrian explosion. Nature. 484: 363–366.
 Sánchez-García T, Chichorro  M, Solá AR, Álvaro JJ, Díez-Montes A, Bellido F, Ribeiro ML, Quesada C, Lopes JC, Dias da Silva Í, González-Clavijo E, Gómez Barreiro J & López-Carmona A (2019). The Cambrian-Early Ordovician rift stage in the Gondwanan units of the Iberian Massif. In The Geology of Iberia: A Geodynamic Approach (pp 27–74). Heidelberg: Springer.
 Schiffbauer JD, Huntley JW, O’Neil GR, Darroch SA, Laflamme M & Cai Y (2016). The latest Ediacaran Wormworld fauna: setting the ecological stage for the Cambrian explosion. GSA Today. 26.(11): 4–11.
 Schiffbauer JD, Selly T, JacquetSM, Merz RA, Nelson LL, Strange MA, Cai Y & Smith EF (2020) Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period. Nature Communications. 11:205.
 Selly T, Schiffbauer JD, Jacquet SM, Smith EF, Nelson LL, Andreasen BD, Huntley JW, Strange MA, O’Neil GR, Thater CA, Bykova N, Steiner M, Yang B & Cai Y (2019). A new cloudinid fossil assemblage from the terminal Ediacaran of Nevada, USA. Journal of Systematic Palaeontology. 18: 357–379.
 Tarhan L (2018). The early Paleozoic development of bioturbation–evolutionary and geobiological consequences. Earth-Science Reviews. 178. 177-207.
 Terleev AA, Postnikov AA, Tokarev DA, Sosnovskaya OV& Bagmet GN (2011). CloudinaNamacalathusKorilophyton association in the Vendian of the Altay-Sayan Foldbelt (Siberia). In Proceedings of International Conference on Neoproterozoic Sedimentary Basins: Stratigraphy, Geodynamics and Petroleum Potential. 96–98.
 Vidal G, Palacios T, Díez Balda MA, Gámez Vintaned JA & Grant SWF (1994). Neoproterozoic–early Cambrian geology and palaeontology of Iberia. Geological Magazine. 131:729–765.
 Warren LV, Fairchild TR, Gaucher C, Boggiani PC, Poire DG, Anelli LE & Inchausti JC (2011). Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay. Terra Nova. 23:382–389.
 Warren LV, Simões MG, Fairchild TR, Riccomini C, Gaucher C, Anelli LE, Freitas BT, Boggiani PC & Quaglio F (2013). Origin and impact of the oldest metazoan bioclastic sediments. Geology. 41:507–510.
 Wood RA, Grotzinger JP & Dickson JAD (2002). Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science. 296:2383–2386.
 Wood R, et al. (2019). Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nature Ecology & Evolution. 3:528­–538.
 Wood R and Curtis A (2015). Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding. Geobiology. 13: 112–122.
 Wood RA & Zhuravlev AY (2012). Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletons. Earth-Science Reviews. 115:249–261.
Yang B, Steiner M, Schiffbauer JD, Selly T, Wu X, Zhang C & Liu P (2020). Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids. Scientific Reports.10(535).
Xiao S & Laflamme, M (2009). On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution. 24:31-40.