skip to main content
Menu
Original Article

Daedalus Mega-ichnosites: The Armorican Quartzite Bridge between Villuercas-Ibores-Jara and Naturtejo UNESCO Global Geoparks

Authors

Abstract

The Early Paleozoic oceans were generally characterized by short trophic chains and simple ecological tiering dominated by suspension-feeding organisms. However, the Great Ordovician Biodiversification Event (GOBE) was responsible for the complexification of food webs, increasing depth and diversity of substrate ecospace utilization and increasing benthic competition for resources near the water-substrate interface. Daedalus is an enigmatic trace fossil that precedes this period of nearshore innovation and its disappearance is probably related to the escalation in tiering complexity, especially among benthic surficial feeders, that may have cut access to their main food sources. Daedalus producers were responsible for the occupation of some of the earliest deep substrate tiers, probably feeding from particulate organics and meiofauna using complex architectures for resource exploitation. They were responsible for characteristic ichnofabrics that can be found, especially in Lower-to-Middle Ordovician sandstones, in the “Armorican Quartzite” and similar nearshore facies around Gondwana. Villuercas-Ibores-Jara and Naturtejo UNESCO Global Geopark show several geosites where the best-preserved forms of Daedalus can be found and where its crowded ichnofabrics can be followed in large-scale exposures. Indeed, these are mega-ichnosites of international paleontological relevance for understanding behavior and ecospace utilization of a characteristic trace fossil during the GOBE. This paleoecological significance meant that Daedalus became a symbol for a cross-border Interreg Project that connects the two UNESCO geoparks. The Armorican Quartzite Route is an 800 km-long road following the main geological structures and promoting sustainable tourism attractions along the way. The Bridge over the Armorican Quartzite has the goal of fostering sustainable development through common scientific and education tools, raising awareness of the GOBE as one of the most important events of biodiversification in the Earth history and a key element of the geological heritage of both UNESCO Geoparks.

Read the full text of the article

Keywords

Main Subjects

References

Barrera JM & Gil Montes J (2013). Guía de Geositios del Geoparque Villuercas-Ibores-Jara. Cáceres: Diputacón Provincial.

Barrera JM & Neto de Carvalho C (2018). The bridge over the Armorican Quartzite. Global Geoparks Network Newsletter 2018. 1: 8–9.

Bayet-Goll A & Neto de Carvalho C (2020). Architectural evolution of a mixed-influenced deltaic succession: Lower-to-Middle Ordovician Armorican Quartzite in the southwest Central Iberian Zone, Penha Garcia Formation (Portugal). International Journal of Earth Sciences. 109: 2495–2526.

Beuf S, Biju-Duval B, Charpal O, Rognon P, Gariel O & Bennacef A (1971). Les grès du Paléozoïque inférieur au Sahara. Sédimentation et discontinuités, évolution structurale d’un craton. Paris: Technip.

Bock MJ & Miller DC (1995). Storm effects on particulate food resources on an intertidal sandflat. Journal of Experimental Marine Biology and Ecology. 187: 81–101.

Cortijo I, Caballero J.L, Barrera JM, Gil Montes J & Palacios T (2016). Guía Turistica del Geoparque Mundial de la UNESCO Villuercas-Ibores-Jara. Cáceres: APRODERVI.

Delgado JFN (1885). Terrenos paleozóicos de Portugal: Estudo sobre os Bilobites e outros fósseis das quartzites da base do Systema Silurico de Portugal. Lisbon: Mem. Sec. Trab. Geol. de Portugal.

Desai BG, Shukla R & Saklani RD (2010). Ichnology of the Early Cambrian Tal Group, Nighalidar Syncline, Lesser Himalaya, India. Ichnos. 17: 233–245.

Desjardins PR, Mángano MG, Buatois LA & Pratt BR (2010). Skolithos pipe rock and associated ichnofabrics from the southern Rocky Mountains, Canada: colonization trends and environmental controls in an early Cambrian sand-sheet complex. Lethaia. 43: 507–528.

Droser ML (1991). Ichnofabric of the Paleozoic Skolithos Ichnofacies and the nature and distribution of Skolithos piperock. Palaios, 6: 316–325.

Durand J (1985). Le Grés Armoricain. Sédimentologie, Traces Fossiles, Milieux de dépôt. Rennes: Memoires et Documents du Centre Armoricain d’Etude Structurale des Socles. 3.

Gibert J, Ramos E & Marzo M (2011). Trace fossils and depositional environments in the Hawaz Formation, Middle Ordovician, western Libya. Journal of African Earth Sciences. 60: 28–37.

Gutérrez-Marco JC, Lorenzo S & Sá AA (2017). Fontanarejo (Ciudad Real): una localidad icnologica excepcional del Ordovícico Inferior en los Montes de Toledo meridionales. Geogaceta. 52: 47–50.

Gutiérrez-Marco JC, Rábano I, Sá AA, San José M, Pieren Pidal AP, Sarmiento GN, Piçarra JM, Durán JJ, Baeza E & Lorenzo S (2007). Public dissemination of knowledge regarding Ordovician geological and palaeontological heritage in protected natural areas of Iberia. Acta Palaeontologica Sinica. 46: 163–169.

Heward AP, Miller CG & Booth GA (2019). The Early Ordovician Middle Shale Member (Am3) of the Amdeh Formation and further evidence of conodont faunas from the Sultanate of Oman. Geological Magazine. 156: 1357–1374.

Lessertisseur J (1971). L’énigme du Daedalus (Daedalus Rouault, 1850). Ichnofossilia. Bulletin du Muséum National d’Histoire Naturelle, Sciences de la Terre. 20: 38–65.

Liang F, Liu JB & Zhan ZB (2012). Temporal distribution of piperocks in Cambrian and Ordovician: A coevolutionary process with changes of paleoenvironment. Science China, Earth Sciences. 55: 26–38.

López Caballero J, Barrera Martín-Merás JM & Cortijo Sanchez I (coord.) (2018). The Villuercas-Ibores-Jara UNESCO Global Geopark. Cáceres: Diputación de Cáceres.

Mángano MG & Buatois LA (2011). Timing of infaunalization in shallow marine early Paleozoic communities in Gondwanan settings: discriminating evolutionary and paleogeographic controls. Palaeontologia Electronica. 14(2): 9A, 21 pp.

Mángano MG & Buatois LA (2015). The trace-fossil record of tidal flats through the Phanerozoic: Evolutionary innovations and faunal turnover. Geological Association of Canada, Miscellaneous Publication. 9: 157–177.

McIlroy D & Garton M (2010). Realistic interpretation of ichnofabrics and palaeoecology of the pipe-rock biotope. Lethaia. 43: 420–426.

Neto de Carvalho C (2003). Fractal implications in spatial and evolutionary paleoecology of the Daedalus producer (ichnofabric analysis). [In Abstracts Book of] XIV International Congress on Mathematical Physics. Lisbon: World Scientific.

Neto de Carvalho C & Baucon A (2013) Multifractals and Capacity Dimension as measures of disturbance patch dynamics in Daedalus ichnofabrics. In Mathematics of Planet Earth (pp. 747–751). Berlin: Springer Lecture Notes in Earth System Sciences.

Neto de Carvalho C, Baucon A & Gonçalves D (2016).  Daedalus mega-ichnosite from the Muradal Mountain (Naturtejo Global Geopark, central Portugal): between the Agronomic Revolution and the Ordovician Radiation. Comunicações Geológicas. 103: 59–70.

Neto de Carvalho C, Jensen, S, Palácios T, Barrera, J.M, Cortijo I & Caballero JL (2018). Daedalus: symbol of the bridge over the Armorican Quartzite uniting Villuercas-Ibores-Jara (Spain) and Naturtejo (Portugal) UNESCO Global Geoparks. [In Abstracts Book of] 8th International Conference on UNESCO Global Geoparks, “Geoparks and Sustainable Development” (pp. 196). Italy: Adamello Brenta Geopark.

Neto de Carvalho C & Rodrigues NPC (2002). Los Zoophycos del Bajociense-Bathoniense de la Praia da Mareta (Algarve, Portugal): Arquitectura y finalidades en régimen de dominancia ecológica. [In Abstracts Book of] Congresso Ibérico de Paleontologia (pp. 98–99). Spain: Univ. Salamanca.

Neto de Carvalho C & Rodrigues NPC (2003). Los Zoophycos del Bajociense-Bathoniense de la Praia da Mareta (Algarve, Portugal): Arquitectura y finalidades en régimen de dominancia ecológica. Revista Española de Paleontologia. 18: 229–241.

Noffke N (2012) Daedalus halli: a fossil biofilm harvester from the Lower Arenigian, Montagne Noire, France. [In Abstracts Book of] GSA Abstracts with Programs. 44(7): 500.

Poiré DG, Spalletti LA & del Valle A (2003). The Cambrian-Ordovician siliciclastic platform of the Balcarce Fm. (Tandilia System, Argentina): facies, trace fossils, palaeoenvironments and sequence stratigraphy. Geologica Acta. 1: 41–60.

Reineck HE (1963) Sedimentgefüge im Bereich der südlichen Nordsee. Abhandlungen der Senckenbergischen Naturforschenden. Gesellshaft. 505: 1-138.

Riedl RJ, Huang N & Machen R (1972). The subtidal pump: a mechanism of interstitial water exchange by water action. Marine Biology. 13: 210–221.

Rouault M (1850). Note préliminaire sur une nouvelle formation découverte dans le terrain silurien inférieure de la Bretagne. Bulletin Société Géologique du France. 7: 724–744.

Sá AA, Meireles C & Coke C (2002). Concentração maciça de Daedalus labechei (Rouault) (icnofóssil ordovícico) no Alto de Martim Preto (Guadramil-Bragança): património paleontológico a preservar e divulgar. [In Abstracts Book of] Congresso Ibérico de Paleontologia (pp. 138–139). Spain: Univ. Salamanca.

Sarle CJ (1906). Arthrophycus and Daedalus of burrow origin. Proceedings of the Rochester Academy of Science. 4: 203–210.

Seilacher A (1964). Sedimentological classification and nomenclature of trace fossils. Sedimentology. 3: 253–256.

Seilacher A (2000). Ordovician and Silurian Arthrophycid ichnostratigraphy. In Geological Exploration in Murzuq Basin (pp. 237–258). Elsevier Science B. V.

Seilacher A (2007). Trace fossil analysis. Berlin Heidelberg: Springer.

Thayer CW (1983). Sediment-mediated biological disturbance and the evolution of marine benthos. In Biotic Interactions in Recent and Fossil Benthic Communities (pp. 480–625). Plenum Press. New York.