A 12 bit Non-Uniform Sampling SAR ADC Using Switchable Sampling Frequency
- Islamic Azad University
Received: 2025-05-06
Revised: 2025-08-18
Accepted: 2025-08-26
Published in Issue 2025-09-30
Copyright (c) 2025 Bahareh Shojaeirad, Amir Amirabadi, Iman Ahanian (Author)

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
How to Cite
PDF views: 19
Abstract
In this study, a frequency-division based successive approximation register analog-to-digital converter (SAR ADC) with two tone input signals and 12-bit resolution is developed in 0.18μm CMOS technology. The sampling frequency is 24 KHz. The base of this concept is non-uniform sampling achieved by phase/frequency detectors, frequency divider blocks, and up/down thermometer counter. In this design, the power consumption of the data converter is significantly lowered without sacrificing the linearity of the system by decreasing the sample frequency when the input signal will be slow down, such as biological signals that do not change frequently. At a 1.8 V supply, a factor of merit (FOM) of fJ/conversion 6.95 is attained.
Keywords
- Analog-to-digital converter (ADC), Successive approximation register (SAR), non-uniform sampling, reduced frequency, and low power
References
- Fateh S. Calibration techniques for digitally assisted nyquist-rate ADCs: ETH Zurich; 2016.
- https://doi.org/10.3929/ethz-a-010655420
- Lin J-Y, Hsieh C-C. A 0.3 V 10-bit 1.17 f SAR ADC with merge and split switching in 90 nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers. 2014;62(1):70-9. https://doi.org/10.1109/TCSI.2014.2349571
- Lin Y-Z, Chang S-J, Shyu Y-T, Huang G-Y, Liu C-C, editors. A 0.9-V 11-bit 25-MS/s binary-search SAR ADC in 90-nm CMOS. IEEE Asian Solid-State Circuits Conference 2011; 2011: IEEE.
- https://doi.org/10.1109/ASSCC.2011.6123606
- Liu W, Huang P, Chiu Y. A 12-bit, 45-MS/s, 3-mW redundant successive-approximation-register analog-to-digital converter with digital calibration. IEEE Journal of Solid-State Circuits. 2011;46(11):2661-72.
- https://doi.org/10.1109/JSSC.2011.2163556
- Liu W, Huang P, Chiu Y, editors. A 12-bit 50-MS/s 3.3-mW SAR ADC with background digital calibration. Proceedings of the IEEE 2012 Custom Integrated Circuits Conference; 2012: IEEE.
- https://doi.org/10.1109/CICC.2012.6330694
- Tao Y, Lian Y. A 0.8-V, 1-MS/s, 10-bit SAR ADC for multi-channel neural recording. IEEE Transactions on Circuits and Systems I: Regular Papers. 2014;62(2):366-75.
- https://doi.org/10.1109/TCSI.2014.2360762
- Johns DA, Martin K. Analog integrated circuit design: John Wiley & Sons; 2008.
- Tang X, Liu J, Shen Y, Li S, Shen L, Sanyal A, et al. Low-power SAR ADC design: Overview and survey of state-of-the-art techniques. IEEE Transactions on Circuits and Systems I: Regular Papers. 2022;69(6):2249-62.
- https://doi.org/10.1109/TCSI.2022.3166792
- Schinkel D, Mensink E, Klumperink E, Van Tuijl E, Nauta B, editors. A double-tail latch-type voltage sense amplifier with 18ps setup+ hold time. 2007 IEEE international solid-state circuits conference Digest of technical papers; 2007: IEEE.
- https://doi.org/10.1109/ISSCC.2007.373420
- Liu M, Pelzers K, van Dommele R, van Roermund A, Harpe P. A106nW 10 b 80 kS/s SAR ADC with duty-cycled reference generation in 65 nm CMOS. IEEE Journal of Solid-State Circuits. 2016;51(10):2435-45.
- https://doi.org/10.1109/JSSC.2016.2587688
- Harpe P, Zhang Y, Dolmans G, Philips K, De Groot H, editors. A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step. 2012 IEEE International Solid-State Circuits Conference; 2012: IEEE.
- https://doi.org/10.1109/ISSCC.2012.6177096
- Chen L, Sanyal A, Ma J, Tang X, Sun N, editors. Comparator common-mode variation effects analysis and its application in SAR ADCs. 2016 IEEE International Symposium on Circuits and Systems (ISCAS); 2016: IEEE.
- https://doi.org/10.1109/ISCAS.2016.7538972
- SW MC. A 6b 600MS/s 5.3 mW Asynchronous ADC in 0.13 um CMOS. ISSCC Dig Tech Papers, Feb 2006. 2006:574-5.
- https://doi.org/10.1109/JSSC.2006.884231
- Donoho DL. Compressed sensing. IEEE Transactions on information theory. 2006;52(4):1289-306.
- https://doi.org/10.1109/TIT.2006.871582
- Anastasia BV, Mikhail PN, editors. An Analog-to-information Converter Using Non-Uniform Sampling Architecture and SAR ADC. 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus); 2022: IEEE.
- https://doi.org/10.1109/ElConRus54750.2022.9755580
- Fateh S, Schönle P, Bettini L, Rovere G, Benini L, Huang Q. A reconfigurable 5-to-14 bit SAR ADC for battery-powered medical instrumentation. IEEE Transactions on Circuits and Systems I: Regular Papers. 2015;62(11):2685-94.
- https://doi.org/10.1109/TCSI.2015.2477580
- Wannamaker RA, Lipshitz SP, Vanderkooy J, Wright JN. A theory of nonsubtractive dither. IEEE Transactions on Signal Processing. 2000;48(2):499-516.
- https://doi.org/10.1109/78.823976
- Harpe P, Cantatore E, Van Roermund A. A 10b/12b 40 kS/s SAR ADC with data-driven noise reduction achieving up to 10.1 b ENOB at 2.2 fJ/conversion-step. IEEE Journal of Solid-State Circuits. 2013;48(12):3011-8.
- https://doi.org/10.1109/JSSC.2013.2278471
- Silva VML, de Souza AAL, Catunda SYC, Freire RCS, editors. Non-uniform sampling based ADC architecture using an adaptive level-crossing technique. 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC); 2017: IEEE.
- https://doi.org/10.1109/I2MTC.2017.7969771
- Wu T-F, Dey S, Chen MS-W. A nonuniform sampling ADC architecture with reconfigurable digital anti-aliasing filter. IEEE Transactions on Circuits and Systems I: Regular Papers. 2016;63(10):1639-51.
- https://doi.org/10.1109/TCSI.2016.2586523
- Zaare M, Sepehrian H, Maymandi-Nejad M. A new non-uniform adaptive-sampling successive approximation ADC for biomedical sparse signals. Analog Integrated Circuits and Signal Processing. 2013;74:317-30.
- http:// doi.org/10.1007/s10470-012-9984-7
- Maloberti F. Data converters specifications: Springer; 2007.
- https://doi.org/10.1007/978-0-387-32486-9_2
- Razavi B. Principles of data conversion system design. (No Title). 1994.
- https://doi.org/10.1109/9780470545638
- Song B-S. MicroCMOS design: CRC Press; 2011.
- https://doi.org/10.1201/b11192
- Liu C-C, Huang M-C, Tu Y-H. A 12 bit 100 MS/s SAR-assisted digital-slope ADC. IEEE Journal of Solid-State Circuits. 2016;51(12):2941-50.
- https://doi.org/10.1109/JSSC.2016.2591822
- Marvasti F. Nonuniform sampling: theory and practice: Springer Science & Business Media; 2012.
- https://doi.org/10.1007/978-1-4612-0143-4
- Hussein AI, Vasadi S, Paramesh J. A 450 fs 65-nm CMOS millimeter-wave time-to-digital converter using statistical element selection for all-digital PLLs. IEEE Journal of Solid-State Circuits. 2017;53(2):357-74.
- https://doi.org/10.1109/JSSC.2017.2762698
- Jeong G-S, Kim W, Park J, Kim T, Park H, Jeong D-K. A 0.015-mm2 Inductorless 32-GHz Clock Generator With Wide Frequency-Tuning Range in 28-nm CMOS Technology. IEEE Transactions on Circuits and Systems II: Express Briefs. 2015;64(6):655-9.
- https://doi.org/10.1109/TCSII.2015.2504274
- Kull L, Luu D, Menolfi C, Braendli M, Francese PA, Morf T, et al. A 24–72-GS/s 8-b time-interleaved SAR ADC with 2.0–3.3-pJ/conversion and> 30 dB SNDR at Nyquist in 14-nm CMOS FinFET. IEEE Journal of Solid-State Circuits. 2018;53(12):3508-16.
- https://doi.org/10.1109/JSSC.2018.2859757
- Lee J, Chiang P-C, Peng P-J, Chen L-Y, Weng C-C. Design of 56 Gb/s NRZ and PAM4 SerDes transceivers in CMOS technologies. IEEE Journal of Solid-State Circuits. 2015;50(9):2061-73.
- https://doi.org/10.1109/JSSC.2015.2433269
- Shu G, Choi W-S, Saxena S, Talegaonkar M, Anand T, Elkholy A, et al. A 4-to-10.5 Gb/s continuous-rate digital clock and data recovery with automatic frequency acquisition. IEEE Journal of Solid-State Circuits. 2015;51(2):428-39.
- https://doi.org/10.1109/JSSC.2015.2497963
- Miller R. Fractional-frequency generators utilizing regenerative modulation. Proceedings of the IRE. 1939;27(7):446-57.
- https://doi.org/10.1109/JRPROC.1939.228513
- Murata K, Otsuji T, Sano E, Ohhata M, Togashi M, Suzuki M. A novel high-speed latching operation flip-flop (HLO-FF) circuit and its application to a 19-Gb/s decision circuit using a 0.2-/spl mu/m GaAs MESFET. IEEE Journal of Solid-State Circuits. 1995;30(10):1101-8.
- https://doi.org/10.1109/4.466072
- Rategh HR, Lee TH. Superharmonic injection-locked frequency dividers. IEEE Journal of Solid-State Circuits. 1999;34(6):813-21.
- https://doi.org/10.1109/4.766815
- Razavi B. Design of integrated circuits for optical communications: John Wiley & Sons; 2012.
- Lee J, Razavi B. A 40-GHz frequency divider in 0.18-/spl mu/m CMOS technology. IEEE Journal of solid-state circuits. 2004;39(4):594-601.
- https://doi.org/10.1109/JSSC.2004.825119
- Heydari P, Mohanavelu R. A 40-GHz flip-flop-based frequency divider. IEEE Transactions on Circuits and Systems II: Express Briefs. 2006;53(12):1358-62.
- https://doi.org/10.1109/TCSII.2006.885393
- Feng C, Yu XP, Lim WM, Yeo KS. A 40 GHz 65 nm CMOS phase-locked loop with optimized shunt-peaked buffer. IEEE Microwave and Wireless Components Letters. 2014;25(1):34-6.
- https://doi.org/10.1109/LMWC.2014.2365994
- Razavi B. Design of analog CMOS integrated circuits: 清华大学出版社有限公司; 2005.
- Hyun Y, Park I-C. Constant-Time Synchronous Binary Counter With Minimal Clock Period. IEEE Transactions on Circuits and Systems II: Express Briefs. 2021;68(7):2645-9.
- https://doi.org/10.1109/TCSII.2021.3054014
- Shah OA, Vats S, editors. Floorplanning and Comparative Analysis of 16-bit Synchronous Up/Down Counter in Different CMOS Technology. 2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES); 2023: IEEE.
- https://doi.org/10.1109/CISES58720.2023.10183608
- Luo Y, Jain A, Wagner J, Ortmanns M. Input referred comparator noise in SAR ADCs. IEEE Transactions on Circuits and Systems II: Express Briefs. 2019;66(5):718-22.
- https://doi.org/10.1109/TCSII.2019.2909429
- Ding M, Harpe P, Liu Y-H, Busze B, Philips K, de Groot H, editors. 26.2 A 5.5 fJ/conv-step 6.4 MS/S 13b SAR ADC utilizing a redundancy-facilitated background error-detection-and-correction scheme. 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers; 2015: IEEE.
- https://doi.org/10.1109/ISSCC.2015.7063125
10.57647/j.spre.2025.0903.14
