References

[1] A.M. Musa, S.J. Cooperwood, F.M.O. Khan, A Review of Coumarin Derivatives in Pharmacotherapy of Breast Cancer, Curr. Med. Chem., 15 (2008) 2664-2679.
[2] P.A.Z. Hasibuan, U. Harahap, P. Sitorus, D. Satria, The anticancer activities of Vernonia amygdalina Delile. Leaves on 4T1 breast cancer cells through phosphoinositide 3-kinase (PI3K) pathway, Heliyon, 6 (2020) e04449.
[3] F. Keshavarzipour, H. Tavakol, The synthesis of coumarin derivatives using choline chloride/zinc chloride as a deep eutectic solvent, J. Iran. Chem. Soc., 13 (2016) 149-153.
[4] M. Hosseini-Sarvari, S. Najafvand-Derikvandi, Synthesis of 4-(trifluoromethyl) coumarins using nano sulfated-titania as solid acid catalyst under solvent-free conditions, Iran. J. Catal., 6 (2016) 423-430.
[5] A.R. Hajipour, N. Sheikhan, M.A. Alaei, A. Zarei, Brønsted acidic ionic liquid as the efficient and reusable catalyst for synthesis of coumarins via Pechmann condensation under solvent-free conditions, Iran. J. Catal., 5 (2015) 231-236.
[6] K. Niknam, S.A. Sajadi, R. Hosseini, M. Baghernejad, Silica-bonded n-propyldiethylenetriamine sulfamic acid as a recyclable solid acid catalyst for the synthesis of coumarin and biscoumarin derivatives, Iran. J. Catal., 4 (2014) 163-173.
[7] S.S. Gholap, U.P. Deshmukh, M.S. Tambe, Synthesis and in-vitro antimicrobial screening of 3-cinnamoyl coumarin and 3-[3-(1H-indol-2-yl)-3-aryl-propanoyl]-2H-chromen-2-ones, Iran. J. Catal., 3 (2013) 171-176.
[8] J. Banothu, R. Bavantula, P.A. Crooks, Facile one-pot multicomponent synthesis of 2-amino-6-(2-oxo-2H-chromen- 3-yl)-4-arylpyridine-3-carbonitriles using Brønsted acidic ionic liquid as catalyst under solvent-free conditions, Iran. J. Catal., 3 (2013) 41-47.
[9] M.R. Antonijević, D.M. Simijonović, E.H. Avdović, A. Ćirić, Z.D. Petrović, J.D. Marković, V. Stepanić, Z.S. Marković, Green One-Pot Synthesis of Coumarin-Hydroxybenzohydrazide Hybrids and Their Antioxidant Potency, Antioxidants, 10 (2021) 1106.
[10] B. Borah, K.D. Dwivedi, B. Kumar, L.R. Chowhan, Recent advances in the microwave- and ultrasound-assisted green synthesis of coumarin-heterocycles, Arabian Journal of Chemistry, 15 (2022) 103654.
[11] G. Yang, L. Shi, Z. Pan, L. Wu, L. Fan, C. Wang, C. Xu, J. Liang, The synthesis of coumarin thiazoles containing a trifluoromethyl group and their antifungal activities, Arabian Journal of Chemistry, 14 (2021) 102880.
[12] P. Gong, Y. Ma, X. Wang, L. Yu, S. Zhu, A facile and diverse synthesis of coumarin substituted spirooxindole and dispiro oxindole-pyrrolizidine/pyrrolothiazole/pyrrolidine derivatives via 1, 3-dipolar cycloaddition, Tetrahedron, 91 (2021) 132221.
[13] P. Bhaumick, L.H. Choudhury, Multicomponent click polymerization for the synthesis of coumarin containing 1,4-polytriazoles and their application as dye adsorbent, Polymer, 243 (2022) 124580.
[14] A. Jiříčková, O. Jankovský, Z. Sofer, D. Sedmidubský, Synthesis and Applications of Graphene Oxide, Materials, 15 (2022) 920.
[15] M. Verma, I. Lee, J. Oh, V. Kumar, H. Kim, Synthesis of EDTA-functionalized graphene oxide-chitosan nanocomposite for simultaneous removal of inorganic and organic pollutants from complex wastewater, Chemosphere, 287 (2022) 132385.
[16] M. Mirza-Aghayan, M. Mohammadi, R. Boukherroub, Synthesis and characterization of palladium nanoparticles immobilized on graphene oxide functionalized with triethylenetetramine or 2,6-diaminopyridine and application for the Suzuki cross-coupling reaction, J. Organomet. Chem., 957 (2022) 122160.
[17] G. Venkatesh, R. Suganesh, J. Jayaprakash, M. Srinivasan, K.M. Prabu, Perovskite type BaSnO3-reduced graphene oxide nanocomposite for photocatalytic decolourization of organic dye pollutant, Chem. Phys. Lett., 787 (2022) 139237.
[18] Q. Ma, J. Ming, X. Sun, N. Liu, G. Chen, Y. Yang, Visible light active graphene oxide modified Ag/Ag2O/BiPO4/Bi2WO6 for photocatalytic removal of organic pollutants and bacteria in wastewater, Chemosphere, 306 (2022) 135512.
[19] S. Peng, Y. Huang, S. Ouyang, J. Huang, Y. Shi, Y.-J. Tong, X. Zhao, N. Li, J. Zheng, J. Zheng, X. Gong, J. Xu, F. Zhu, G. Ouyang, Efficient solid phase microextraction of organic pollutants based on graphene oxide/chitosan aerogel, Anal. Chim. Acta, 1195 (2022) 339462.
[20] E.N. Alkhafaji, N.A. Oda, L.M. Ahmed, Characterization of silver nanohybrid with layers double hydroxide and demonstration inhibition of antibiotic-resistance Staphylococcus aureus, Egyptian Journal of Chemistry, 65 (2022) 1-2.
[21] H. Kadhim, L. Ahmed, M. AL-Hachamii, Facile Synthesis of Spinel CoCr2O4 and Its Nanocomposite with ZrO2: Employing in Photo‐catalytic Decolorization of Fe (II)-(luminol-Tyrosine) Complex, Egyptian Journal of Chemistry, 65 (2022) 481-488.
[22] B. Hasan Taresh, F. Hadi Fakhri, L. M. Ahmed, Synthesis and Characterization of Cuo/CeO2 Nanocomposites and Investigation Their Photocatalytic Activity, Journal of Nanostructures, 12 (2022) 563-570.
[23] J.M. Casas-Solvas, J.D. Howgego, A.P. Davis, Synthesis of substituted pyrenes by indirect methods, Org. Biomol. Chem., 12 (2014) 212-232.
[24] R. Jetson, N. Malik, A. Luniwal, V. Chari, M. Ratnam, P. Erhardt, Practical synthesis of a chromene analog for use as a retinoic acid receptor alpha antagonist lead compound, Eur. J. Med. Chem., 63 (2013) 104-108.
[25] F. Peng, L. Tan, L. Chen, S.M. Dalby, D.A. DiRocco, J. Duan, M. Feng, G. Gong, H. Guo, J.C. Hethcox, L. Jin, H.C. Johnson, J. Kim, D. Le, Y. Lin, W. Liu, J. Shen, Y. Wan, C. Xiao, B. Xiang, Q. Xiang, J. Xu, L. Yan, W. Yang, H. Ye, Y. Yu, J. Zhang, Manufacturing Process Development for Belzutifan, Part 1: A Concise Synthesis of the Indanone Starting Material, Org. Process Res. Dev., 26 (2022) 508-515.
[26] P. Leowanawat, N. Zhang, V. Percec, Nickel Catalyzed Cross-Coupling of Aryl C–O Based Electrophiles with Aryl Neopentylglycolboronates, J. Org. Chem., 77 (2012) 1018-1025.
[27] B.I. Gaiser, M. Danielsen, E. Marcher-Rørsted, K. Røpke Jørgensen, T.M. Wróbel, M. Frykman, H. Johansson, H. Bräuner-Osborne, D.E. Gloriam, J.M. Mathiesen, D. Sejer Pedersen, Probing the Existence of a Metastable Binding Site at the β2-Adrenergic Receptor with Homobivalent Bitopic Ligands, J. Med. Chem., 62 (2019) 7806-7839.
[28] R. Lagoutte, J.A. Wilkinson, A novel one-step method for the reductive allylation of esters and the first total synthesis of (±)-erythrococcamide B, Tetrahedron Lett., 51 (2010) 6942-6944.
[29] A. Kleineweischede, J. Mattay, Synthesis of Amino- and Bis(bromomethyl)-Substitued Bi- and TetradentateN-Heteroaromatic Ligands: Building Blocks for Pyrazino-Functionalized Fullerene Dyads, Eur. J. Org. Chem., 2006 (2006) 947-957.
[30] A.R. Katritzky, F.-B. Ji, W.-Q. Fan, P. Beretta, M. Bertoldi, Syntheses of triazolo[6,7-d]phthalide and triazolo[6,7-d]dihydrocoumarin, J. Heterocycl. Chem., 29 (1992) 1519-1523.
[31] K. Jakhar, J. Makrandi, A green synthesis and antibacterial activity of 2-aryl-5-(coumarin-3-yl)-thiazolo [3, 2-b][1, 2, 4] triazoles, Indian J. Chem., 15B (2012) 1511-1516.
[32] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339.
[33] A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S.H.M. Jafri, H. Li, Review on Graphene-, Graphene Oxide-,Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications, Materials, 15 (2022) 1012.
[34] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., 22 (2010) 3906-3924.
[35] K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud'homme, I.A. Aksay, R. Car, Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets, Nano Lett., 8 (2007) 36-41.
[36] D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.-H. Yoon, Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide, Langmuir, 26 (2010) 16096-16102.
[37] X. Wu, M. Larhed, Microwave-Enhanced Aminocarbonylations in Water, Org. Lett., 7 (2005) 3327-3329.