References

[1]        A.M. Kovalskii, I.N. Volkov, N.D. Evdokimenko, O.P. Tkachenko, D. V. Leybo, I. V. Chepkasov, Z.I. Popov, A.T. Matveev, A. Manakhov, E.S. Permyakova, A.S. Konopatsky, A.L. Kustov, D. V. Golberg, D. V. Shtansky, Hexagonal BN- and BNOsupported Au and Pt nanocatalysts in carbon monoxide oxidation and carbon dioxide hydrogenation reactions, Appl. Catal. B Environ. 303  (2022) 120891.
[2]        H.R. Azizi, A.A. Mirzaei, R. Sarani, M. Kaykhaii, Pilot scale study of Co-Fe-Ni nanocatalyst for CO hydrogenation in Fischer-Tropsch synthesis, Iran. J. Catal. 9 (2019) 223–231.
[3]        A.K. Datye, M. Votsmeier, Opportunities and challenges in the development of advanced materials for emission control catalysts, Nat. Mater. 20 (2021) 1049–1059.
[4]        A.J.M. Miller, J.A. Labinger, J.E. Bercaw, Homogeneous CO hydrogenation: Ligand effects on the lewis acid-assisted reductive coupling of carbon monoxide, Organometallics. 29 (2010) 4499–4516.
[5]        F. Studt, F. Abild-Pedersen, Q. Wu, A.D. Jensen, B. Temel, J.D. Grunwaldt, J.K. Norskov, CO hydrogenation to methanol on Cu-Ni catalysts: Theory and experiment, J. Catal. 293 (2012) 51–60.
[6]        J. Yang, W. Ma, D. Chen, A. Holmen, B.H. Davis, Fischer-Tropsch synthesis: A review of the effect of CO conversion on methane selectivity, Appl. Catal. A Gen. 470 (2014) 250–260.
[7]        V.R.R. Pendyala, W.D. Shafer, G. Jacobs, B.H. Davis, Fischer-Tropsch synthesis: Effect of reaction temperature for aqueous-phase synthesis over a platinum promoted Co/alumina catalyst, Catal. Letters. 144 (2014) 1088–1095.
[8]        C. Janke, M.S. Duyar, M. Hoskins, R. Farrauto, Catalytic and adsorption studies for the hydrogenation of CO2 to methane, Appl. Catal. B Environ. 152–153 (2014) 184–191.
[9]        M. Athariboroujeny, A. Raub, V. Iablokov, S. Chenakin, L. Kovarik, N. Kruse, Competing Mechanisms in CO Hydrogenation over Co-MnOx Catalysts, ACS Catal. 9 (2019) 5603–5612.
[10]      Y.T. Tsai, X. Mo, A. Campos, J.G. Goodwin, J.J. Spivey, Hydrotalcite supported Co catalysts for CO hydrogenation, Appl. Catal. A Gen. 396 (2011) 91–100.
[11]      C. Göbel, S. Schmidt, C. Froese, Q. Fu, Y.T. Chen, Q. Pan, M. Muhler, Structural evolution of bimetallic Co-Cu catalysts in CO hydrogenation to higher alcohols at high pressure, J. Catal. 383 (2020) 33–41.
[12]      S. Sang, F. Chang, Z. Liu, C. He, Y. He, L. Xu, Difference of ZSM-5 zeolites synthesized with various templates, Catal. Today. 93–95 (2004) 729–734.
[13]      M. Sakmeche, A. Belhakem, R. Kessas, S.A. Ghomari, Effect of parameters on NO reduction by methane in presence of excess O2 and functionalized AlMCM-41 as catalysts, J. Taiwan Inst. Chem. Eng. 80 (2017) 333–341.
[14]      Q. Yu, C. Cui, Q. Zhang, J. Chen, Y. Li, J. Sun, C. Li, Q. Cui, C. Yang, H. Shan, Hierarchical ZSM-11 with intergrowth structures: Synthesis, characterization and catalytic properties, J. Energy Chem. 22 (2013) 761–768.
[15]      G. Xu, J. Zhang, S. Wang, Y. Zhao, X. Ma, Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation, Front. Chem. Sci. Eng. 10 (2016) 417–424.
[16]      H. Yoshida, S. Nonoyama, Y.Y.T. Hattori, Quantitative Determination of Platinum Oxidation State by XANES Analysis, Phys. Scr. T115 (2005) 813-815.
[17]      G. Jacobs, U.M. Graham, E. Chenu, P.M. Patterson, A. Dozier, B.H. Davis, Low-temperature water-gas shift: Impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design, J. Catal. 229 (2005) 499–512.
[18]      S.K. Das, P. Mohanty, S. Majhi, K.K. Pant, CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading, Appl. Energy. 111 (2013) 267–276.
[19]      A. Belhakem, Ournal of, Asian J. Chem. 26 (2014) 6745–6750.
[20]      A. Soualah, J.L. Lemberton, L. Pinard, M. Chater, P. Magnoux, K. Moljord, Hydroconversion of n-decane on Pt/HZSM-5 bifunctional catalysts: Effect of the Si/Al ratio of the zeolite on selectivities, React. Kinet. Mech. Catal. 101 (2010) 209–219.
[21]      M.W. Kadi, A. Hameed, R.M. Mohamed, I.M.I. Ismail, Y. Alangari, H.M. Cheng, The effect of Pt nanoparticles distribution on the removal of cyanide by TiO2 coated Al-MCM-41 in blue light exposure, Arab. J. Chem. 12 (2019) 957–965.
[22]      M. Sakmeche, A. Belhakem, S.A. Ghomari, L. Belgacem, Hydroconversion of n-C10 alkanes using functionalized AlMCM-41 as catalysts, React. Kinet. Mech. Catal. 129 (2020) 975–990.
[23]      M.A. Vannice, J.E. Benson, M. Boudart, Determination of surface area by chemisorption: Unsupported platinum, J. Catal. 16 (1970) 348–356.
[24]      R.F. Hicks, A.T. Bell, Effects of metal-support interactions on the hydrogenation of CO over Pd SiO2 and Pd La2O3, J. Catal. 90 (1984) 205–220.
[25]      B. Sun, G. Yu, J. Lin, K. Xu, Y. Pei, S. Yan, M. Qiao, K. Fan, X. Zhang, B. Zong, A highly selective Raney Fe@HZSM-5 Fischer-Tropsch synthesis catalyst for gasoline production: One-pot synthesis and unexpected effect of zeolites, Catal. Sci. Technol. 2 (2012) 1625–1629.
[26]      M. Popova, P. Djinović, A. Ristić, H. Lazarova, G. Dražić, A. Pintar, A.M. Balu, N.N. Tušar, Vapor-Phase Hydrogenation of Levulinic Acid to γ-valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst, Front. Chem. 6 (2018) 1–12.
[27]      M. V. Cagnoli, N.G. Gallegos, A.M. Alvarez, J.F. Bengoa, A.A. Yeramián, M. Schmal, S.G. Marchetti, Catalytic CO hydrogenation on potassic Fe/zeolite LTL, Appl. Catal. A Gen. 230 (2002) 169–176.
[28]      D.L. Trimm, I.O.Y. Liu, N.W. Cant, The effect of carbon monoxide on the oligomerization of acetylene in hydrogen over a Ni/SiO2 catalyst, J. Mol. Catal. A Chem. 307 (2009) 13–20.
[29]      H. Feng, C. Li, H. Shan, In-situ synthesis and catalytic activity of ZSM-5 zeolite, Appl. Clay Sci. 42 (2009) 439–445.
[30]      A. Belhakem, A. Bengueddach, Catalytic properties and acidity of modified MCM-41 mesoporous materials with low Si/Al ratio: Heptane isomerisation, Bull. Chem. Soc. Ethiop. 20 (1) (2006) 99-112.
[31]      V.Schunemann, al, Fe Promoted Rh-Clusters in zeolite NaY: Caracterization and Catalytic Performance in CO Hydrogenation, J. Catal. 153 (1995) 144–157.
[32]      W. Chen, Y. Ding, X. Song, T. Wang, H. Luo, Promotion effect of support calcination on ethanol production from CO hydrogenation over Rh/Fe/Al2O3 catalysts, Appl. Catal. A Gen. 407 (2011) 231–237.
[33]      J. Panpranot, J.G. Goodwin Jr., A. Sayari, CO Hydrogenation on Ru-Promoted Co/MCM-41 Catalysts, J. Catal. 211 (2002) 530–539.
[34]      N. Bungane, C. Welker, E. Van Steen, J.R. Moss, M. Claeys, Osmium Complexes, 63 (2008) 289–292.
[35]      L. Zhang, X. Zhang, K. Qian, Z. Li, Y. Cheng, L.L. Daemen, Z. Wu, W. Huang, Activation and surface reactions of CO and H2 on ZnO powders and nanoplates under CO hydrogenation reaction conditions, J. Energy Chem. 50 (2020) 351–357.
[36]      R. Joshi, A. Saxena, R. Gounder, Mechanistic insights into alkene chain growth reactions catalyzed by nickel active sites on ordered microporous and mesoporous supports, Catal. Sci. Technol. 10 (2020) 7101–7123.
[37]      J.P.hindermann, al, Mechanistic Aspects of the Formation of Hydrocarbons and Alcohols from CO Hydrogenation, Catal. Rev. Sci. Eng. 35 (2006) 1–127.
[38]      L. Guczi, G. Stefler, O. Geszti, Z. Koppány, Z. Kónya, É. Molnár, M. Urbán, I. Kiricsi, CO hydrogenation over cobalt and iron catalysts supported over multiwall carbon nanotubes: Effect of preparation, J. Catal. 244 (2006) 24–32.