skip to main content
Menu
Original Article

Leachate fermentation from composting organic mineral liquid fertilizer: Effects on the behavior of phosphorus, potassium and organic acids

Authors

Abstract

Purpose: Fermentation process could be a low-cost strategy to stabilize and transform liquid organic residues into organic fertilizers for agricultural use. However, low nitrogen (N), phosphorus (P) and potassium (K) levels have hampered its potential use as an organic fertilizer. So, this study investigated the behavior of P, K and organic acids in the fermentation of the leachate from urban organic solid waste (UOSW) enriched with phosphoric rock (PR) and K sulfate.

Method: Tests for obtaining liquid organic fertilizers rich in P and K were conducted using a 3×3 factorial experiment. The concentrations 5%, 10% and 15% PR, 2.5%, 5 and 10% K sulfate with fractions of the treacle, magnesium sulfate, urea, manganese sulfate, zinc and iron were used. The monitoring of the variables was conducted by using UV-Vis, atomic absorption and HPLC for organic acids.

Results: The concentrations of total phosphorus (TP) and K are influenced by the content of PR. However, the highest content of water-soluble phosphorus (W-SP) was observed in treatments containing 5% and 10% PR. Furthermore, the pH changes were related to the presence of short-chain organic acids. Finally, acetic acid (AA), lactic acid (LA), citric acid (CA), propionic acid (PA) and tartaric acid (TA) were identified as products of the decomposition of organic matter.

Conclusion: The use of leachate for the production of liquid fertilizers can reduce the amount of waste going to landfills and minimize environmental impact. Also, it can be used as a benefit for soil health by providing essential nutrients to plants.

Keywords

References

Adeleke R, Nwangburuka C, Oboirien B (2017) Origins, roles and fate of organic acids in soils: A review. South African   J Bot 108: 393–406. https://doi.org/10.1016/J.SAJB.2016.09.002

Ahmad M, Nadeem SM, Naveed M. Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Prakash Verma J, Meena RS, 1rd Edn. Potassium solubilizing microorganisms for sustainable agriculture, Springer, New Delhi, pp 293-313

Alcaldía de Paipa (2020) Plan de Gestión Integral de Residuos Sólidos PGIRS 2020 Paipa. 57(8), 263. Paipa, Boyacá.

Ameen A (2020) Comparison of crop production efficiency of compost leachate with chemical fertilizer and evaluating its effect on germination and growth of wheat crop. African J Biotechnol 19(5): 282–286. https://doi.org/10.5897/AJB2020.17091

Arora S, Keshari AK (2020) Monte carlo simulation and fuzzy modelling of river water quality for multiple reaches using QUAL2kw. In: Singh R, Shukla P, Singh P 1rd Eds. Environmental Processes and Management. Water Science and Technology Library, Springer, pp 3-24”

Azaña CTY, Sánchez RAL, Villanueva CJM (2021) Effect of the addition of phosphoric rock and alfalfa on the content of nitrogen, phosphorus and potassium of three biol samples. Rebiol 41(2): 187–194. https://doi.org/10.17268/rebiol.2021.41.02.04

Baccot C, Pallier V, Feuillade-Cathalifaud G (2017) Biochemical methane potential of fractions of organic matter extracted from a municipal solid waste leachate: Impact of their hydrophobic character. Waste Manag 63: 257–266. https://doi.org/10.1016/J.WASMAN.2016.11.025

Bakhshandeh E, Pirdashti H, Lendeh KS (2017) Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecol Eng 103: 164–169. https://doi.org/10.1016/J.ECOLENG.2017.03.008

Bangar KC, Yadav KS, Mishra MM (1985) Transformation of rock phosphate during composting and the effect of humic acid. Plant and Soil 85(2): 259–266. https://doi.org/10.1007/BF02139630/METRICS

Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant and Soil 69(3): 353–364. https://doi.org/10.1007/BF02372456/METRICS

Beltrán ME (2014) La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetaL. Corpoica Cienc. Tecnol Agropecu 15(1): 101–113.

Bhalla B, Saini M, Jha M (2012) Characterization of leachate from municipal solid waste (MSW) landfilling sites of Ludhiana, India: A Comparative study. Int J Engineer Resear Applications(IJERA) 2: 732–745.

Bravo AKG, Serrano DAS, Jiménez GL, Nirmalkar K, Murugesan S, García-Mena J, Castillo MEG, Gálvez LRT (2019) Microbial profile of the leachate from mexico city’s bordo poniente composting plant: An inoculum to digest organic waste. Energies 12(12): 2343. https://doi.org/10.3390/EN12122343

Bustamante MA, Ceglie FG, Aly A, Mihreteab HT, Ciaccia C, Tittarelli F (2016) Phosphorus availability from rock phosphate: Combined effect of green waste composting and sulfur addition. J Environ Manag 182: 557–563. https://doi.org/10.1016/j.jenvman.2016.08.016

Cardoso J, Gomes HT, Brito P (2019) Viability of the use of leachates from a mechanical biological municipal solid waste treatment plant as fertilizers. Recycl 4(1): 1–10. https://doi.org/10.3390/recycling4010008

Chatterjee N, Flury M, Hinman C, Cogger CG (2013) Chemical and physical characteristics of compost leachates - A review. Washington State University 1:1-57. https://doi.org/10.6084/m9.figshare.11791020.v1

Chinga W, Torres AG, Chirinos, DT, Marmol LE (2020) Efecto de un lixiviado de vermicompost sobre el crecimiento y producción del algodón. Revista Científica Ecuatoriana 7(2): 32-40. https://doi.org/10.36331/revista.v7i2.130

Corrales LC, Arévalo ZY, Burbano VE (2014) Solubilización de fosfatos: Una función microbiana importante en el desarrollo vegetal. Nova 12(21): 67. https://doi.org/10.22490/24629448.997

De Guardia A, Brunet S, Rogeau D, Matejka G (2002) Fractionation and characterisation of dissolved organic matter from composting green wastes. Bioresour Technol 83(3): 181–187. https://doi.org/10.1016/S0960-8524(01)00228-0

Ditta A, Imtiaz M, Mehmood S, Rizwan MS, Mubeen F, Aziz O, Qian Z, Ijaz R, Tu S (2018) Rock phosphate-enriched organic fertilizer with phosphate-solubilizing microorganisms improves nodulation, growth, and yield of legumes. Commun Soil Sci Plan 49(21): 2715–2725. https://doi.org/10.1080/00103624.2018.1538374

Ebrahimi A, Hashemi H, Eslami H, Fallahzadeh RA, Khosravi R, Askari R, Ghahramani E (2018) Kinetics of biogas production and chemical oxygen demand removal from compost leachate in an anaerobic migrating blanket reactor. J Environ Manag 206: 707–714. https://doi.org/10.1016/J.JENVMAN.2017.10.038

Escobar N, Solarte V (2015) Microbial diversity associated with organic fertilizer obtained by composting of agricultural waste. Int J Biosci Biochem Bioinform 5(2): 70–79. https://doi.org/10.17706/ijbbb.2015.5.2.70-79

García JF, Parra JD, Páez LA (2021) Characterization of composted organic solid fertilizer and fermented liquid fertilizer produced from the urban organic solid waste in Paipa, Boyacá, Colombia. Int J Recycl Org Waste Agricul 10: 379–395. https://doi.org/10.30486/IJROWA.2021.1901014.1083

Ghazala RA, Fathy WM, Salem FH (2019) Application of the produced microbial citric acid as a leachate for uranium from El-Sebaiya phosphate rock. J Radiation Resear Appl Sci 12(1): 78–86. https://doi.org/10.1080/16878507.2019.1594141

Goldberg I, Rokem JS (2009) Organic and fatty acid production, microbial. In: Batt C, Robinson R 1rd Eds. Encyclopedia of microbiology. Amsterdam, Elsevier Inc, pp.421–442.

Hashemi H, Jasemizad T, Derakhshan Z, Ebrahimi A (2017) Determination of sequencing batch reactor (SBR) performance in treatment of composting plant leachate. Health Scope, In Press): 1–8. https://doi.org/10.5812/jhealthscope.13356

Hassan M, Wei H, Qiu H, Jaafry SWH, Su Y, Xie B (2018) Power generation and pollutants removal from landfill leachate in microbial fuel cell: Variation and influence of anodic microbiomes. Bioresour Technol 247: 434–442. https://doi.org/10.1016/J.BIORTECH.2017.09.124

Kersters K, Lisdiyanti P, Komagata K, Swings J (2006) The family Acetobacteraceae: The Genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E 1rd Eds. The Prokaryotes. Springer, New York, NY, pp 163–200.

Krogmann U, Woyczechowski H (2000) Selected characteristics of leachate, condensate and runoff released during composting of biogenic waste. Waste Manag Resear 18(3): 235–248. https://doi.org/10.1177/0734242X0001800305

Kutu FR, Mokase TJ, Dada OA, Rhode OHJ (2019) Assessing microbial population dynamics, enzyme activities and phosphorus availability indices during phospho-compost production. Int J Recycl Org Waste Agricul 8(1): 87–97. https:// doi.org/10.1007/s40093-018-0231-9

Li Y, He D, Niu D, Zhao Y (2015) Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation. Bioprocess Biosyst Eng 38(5): 863–869. https://doi.org/10.1007/s00449-014-1329-8

Lu D, Wang L, Yan B, Ou Y, Guan J, Bian Y, Zhang Y (2014) Speciation of Cu and Zn during composting of pig manure amended with rock phosphate. Waste Manag 34(8): 1529–1536. https://doi.org/10.1016/J.WASMAN.2014.04.008

Malick SP, Antoun H, Chalifour FP, Beauchamp CJ (2019) Potential use of leachate from composted fruit and vegetable waste as fertilizer for corn. Cogent Food Agric 5(1): 2-14. https://doi.org/10.1080/23311932.2019.1580180

Montoya S, Ospina DA, Sánchez ÓJ (2020) Evaluation of the physical–chemical and microbiological characteristics of the phospho-compost produced under forced aeration system at the industrial scale. Waste Biomass Valori 11(11): 1–21. https://doi.org/10.1007/s12649-019-00813-8

Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium- and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agricul Biotechnol 10: 174–181. https://doi.org/10.1016/J.BCAB.2017.03.007

NTC 5167 (Instituto Colombiano de Normas Norma Técnica Colombiana) (2011) Productos para la industria agrícola. productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo. In Icontec Internacional (Issue 571). Bogota, Colombia.

Onireti OO, Lin C, Qin J (2017) Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils. Chemosphere 170: 161–168. https://doi.org/10.1016/j.chemosphere.2016.12.024

Paez LA, Garcia JF, Parra, JD, Jacome LL (2022) Effect of phosphoric rock on the chemical, microbiological and enzymatic quality of poultry, equine and cattle manure compost mix. Int J Recycl Org Waste Agricul 11(3): 385–398. https://doi.org/10.30486/ijrowa.2022.1930622.1247

Panhwar QA, Jusop S, Naher UA, Othman R, Razi, MI (2013) Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. Sci World J 3: 272409. https://doi.org/10.1155/2013/272409

Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3): 189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005

Papagianni M (2007) Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnol Adv 25(3): 244–263. https://doi.org/10.1016/J.BIOTECHADV.2007.01.002

Parvathy N, Hari B, Jisha S (2019) The effect of addition of propionic acid stabilised fermented fishery waste as biofertilizer in the culture of ornamental fish. In: Sherly WE, Kollam K Organised Guppy (Poeciliareticuata), Proceedings of the International Seminar on Blue Growth Initiative: Sustainable Fishery Development Strategies and Advanced Technologies for Aquaculture 1rd eds. Matsyafed, India. pp 41-43.

Patiño-Torres CO, Sanclemente-Reyes OE (2014) Phosphate-solubilizing microorganisms (PSM): A biotechnological alternative solution for a sustainable agriculture. Entramado 10(2): 288-297.

Phibunwatthanawong T, Riddech N (2019) Liquid organic fertilizer production for growing vegetables under hydroponic condition. Int J Recycl Org Waste Agricul 8(4): 369–380. https://doi.org/10.1007/s40093-019-0257-7

Postacchini L, Ciarapica FE, Bevilacqua M (2018) Environmental assessment of a landfill leachate treatment plant: Impacts and research for more sustainable chemical alternatives. J Clean Prod 183: 1021–1033. https://doi.org/10.1016/j.jclepro.2018.02.219

Roy D, Azaïs A, Benkaraache S, Drogui P, Tyagi RD (2018) Composting leachate: Characterization, treatment, and future perspectives. Rev Environ Sci Bio 17(2): 1–27. https://doi.org/10.1007/s11157-018-9462-5

Roy D, Benkaraache S, Azaïs A, Drogui P, Tyagi RD (2019) Leachate treatment: Assessment of the systemic changes in the composition and biodegradability of leachates originating in an open co-composting facility in Canada. J Environ Chem Eng 7(3): 103056. https://doi.org/10.1016/J.JECE.2019.103056

Saeid A, Prochownik E, Dobrowolska-Iwanek J (2018) Phosphorus solubilization by Bacillus species. Molecules 23(11): 2897. https://doi.org/10.3390/molecules23112897

Schouben ALG, De Prager MS, Muñoz JE, Valencia IC (2014) Efecto del fósforo y potasio en la producción de ácido cítrico utilizando una cepa de Aspergillus niger. Acta Agronomica 63(3): 222-229. https://doi.org/10.15446/ACAG.V63N3.35809

Selena-Mesías D, Solís-Salas N, Peñafiel-Ayala R (2022) Análisis de los sistemas anaeróbicos para la purificación lixiviados de rellenos sanitarios y la generación de energía renovable: Reactores UASB, sistemas anammox y bioceldas. Investigación y Desarrollo 15(1): 148–165. https://doi.org/10.31243/id.v15.2022.1600

Sengun I (2017) Acetic acid bacteria: Fundamentals and food applications. In Acetic Acid Bacteria: Fundamentals and Food Applications. CRC Press. pp. 162–192. https://doi.org/10.1201/9781315153490

Shen Y, Ma Z, Chen H, Lin H, Li G, Li M, Tan D, Gao W, Jiao S, Liu P, Song X, Chang S (2023) Effects of macromolecular organic acids on reducing inorganic phosphorus fixation in soil. Heliyon 9(4): e14892. https://doi.org/10.1016/j.heliyon.2023.e14892

Siciliano A, Limonti C, Curcio GM, Calabrò V (2019) Biogas generation through anaerobic digestion of compost leachate in semi-continuous completely stirred tank reactors. Processes 7(9): 635. https://doi.org/10.3390/PR7090635

Siciliano A, Limonti C, Curcio GM (2021) Performance evaluation of pressurized anaerobic digestion (PDA) of raw compost leachate. Fermentation 8(1): 15. https://doi.org/10.3390/FERMENTATION8010015

Singh CP (2012) Preparation of phospho-compost and its effect on the yield of moong bean and wheat. Biol Agric Hortic 2(3): 223–229. https://doi.org/10.1080/01448765.1985.9754435

Tate R (1992) Soil organic matter. Biological and ecological effects. Krieger Publishing Company, USA.

Tran QNM, Mimoto H, Nakasaki K (2015) Inoculation of lactic acid bacterium accelerates organic matter degradation during composting. Int Biodeterioro Biodegradación 104: 377–383. https://doi.org/10.1016/J.IBIOD.2015.07.007

Tufvesson P, Ekman A, Sardari RRR, Engdahl K, Tufvesson L (2013) Economic and environmental assessment of propionic acid production by fermentation using different renewable raw materials. Bioresour Technol 149: 556–564. https://doi.org/10.1016/J.BIORTECH.2013.09.049

Velásquez JA, Beltrán D, Padilla L, Giraldo G (2010) Obtención de ácido cítrico por fermentación con Aspergillus niger utilizando sustrato de plátano dominico hartón (musa aab simmonds) maduro. Tumbaga 5: 135–147.

Wei Y, Zhao Y, Wang H, Lu Q, Cao Z, Cui H, Zhu L, Wei Z (2016) An optimized regulating method for composting phosphorus fractions transformation based on biochar addition and phosphate-solubilizing bacteria inoculation. Bioresour Technol 221: 139–146. https://doi.org/10.1016/j.biortech.2016.09.038

Yadav S, Maitra SS, Pal S, Singh N, Gupta SK, Ghosh SK, Sreekishnan TR (2014) Accumulation of lactic acid during biodigestion of municipal solid waste leachate and identification of indigenous lactic acid bacteria in leachate. J Hazard Toxic Radioact Waste 18(4): 04014021. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000218

Zhan Y, Zhang Z, Ma T, Zhang X, Wang R, Liu Y, Sun B, Xu T, Ding G, Wei Y, Li J (2021) Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting. Bioresour Technol 337: 125433. https://doi.org/10.1016/j.biortech.2021.125433