skip to main content
Menu
Short Communications

Quantum chemical and molecular docking studies of Boron-doped and reduced Graphene Oxide supported nanocomposite

Authors

Abstract

Nanocomposites have attracted great attention due to their outstanding properties compared to bulk materials for many applications in various fields. However, their computational studies for property exploration are still at a stage of infancy. So far very few studies have been attempted to study the quantum chemical parameters of nanocomposites. This article, reports the density functional theory (DFT) calculations and molecular docking studies to explain important properties of boron-doped and reduced graphene oxide (rGO) supported nanocomposite (B-CuO/rGO). Parameters including highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO), energy gap (ΔE), absolute hardness (η), absolute softness (σ), absolute electronegativity (χ), chemical potential (Pi), global electrophilicity (ω), and additional electronic charge (ΔNmax) were predicted. Molecular docking was performed against antimicrobial protein target localization of lipoproteins (LolA) (PDB i.d. 2W7Q) from Pseudomonas aeruginosa and a binding energy of -11.7 kcal/mol was obtained showing appreciable binding of the nanocomposite with the active site of the protein.

Graphical Abstract

Keywords

References

1. Jabeen S., Ahmad N., Bala S., Bano, D., Khan T., (2023), Nanotechnology in environmental sustainability and performance of nanomaterials in recalcitrant removal from contaminated Water: A review. Int. J. Nano Dimens. 14: 1-28. http://dx.doi.org/10.22034/IJND.2022.1963262.2162

2. Jabeen S., Ganie A. S., Bala, S., Khan T., (2023), Photocatalytic degradation of malachite green dye via an inner transition metal Oxide-based nanostructure fabricated through a hydrothermal route. Mater. Proceedings. 14: 5-9. http://dx.doi.org/10.3390/IOCN2023-14445

3.       Jabeen S., Ganie A. S., Ahmad N., Hijazi S., Bala S., Bano D., Khan T., (2023), Fabrication and studies of LaFe2O3/Sb2O3 heterojunction for enhanced degradation of Malachite green dye under visible light irradiation. Inorg. Chem. Commun. 152: 110729. http://dx.doi.org/10.1016/j.inoche.2023.110729

4.       Siddique S., Waseem M., Naseem T., Bibi A., Hafeez M., Din S. U., Haq S., Qureshi S., (2021), Photo-catalytic and anti-microbial activities of rGO/CuO nanocomposite. J. Inorg. Organomet. Polym. Mater. 31: 1359-1372. https://10.1007/s10904-020-01760-x

5.       Esfahani S., Akbari J., Soleimani-Amiri S., Mirzaei M., Gol A. G., (2023), Assessing the drug delivery of ibuprofen by the assistance of metal-doped graphenes: Insights from density functional theory. Diam. Relat. Mater. 135: 109893. https://doi.org/10.1016/j.diamond.2023.109893

6.       Jabeen S., Siddiqui V. U., Rastogi S., Srivastava S., Bala S., Ahmad N., Khan T., (2023), Fabrication of B–CuO nanostructure and B-CuO/rGO binary nanocomposite: A comparative study in the context of photodegradation and antimicrobial activity assessment. Mater. Today Chem. 33: 101712. http://dx.doi.org/10.1016/j.mtchem.2023.101712

7.       Akhavan O., Ghaderi E., (2010), Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 10: 5731-5733. https://doi.org/10.1021/nn101390x

8.       Ou L., Song B., Liang H., Liu, J., Feng X., Deng B., Shao, L., (2016), Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Particle Fibre Toxicol. 13: 1-24. https://doi.org/10.1186/s12989-016-0168-y

9.       Khan T., Azad I., Ahmad R., Lawrence A. J., Azam M., Wabaidur S. M., Al-Resayes S. I., Raza S., Khan A.R., (2021), Molecular structure simulation of (E)-2-(butan-2-ylidene) hydrazinecarbothioamide using the DFT approach, and antioxidant potential assessment of its complexes., King Saud. Univ. Sci. 33: 101313. https://doi.org/10.1002/vjch.202200233

10.    Selli D., Fazio G., Di Valentin C., (2017), Using density functional theory to model realistic TiO2 nanoparticles, their photoactivation, and interaction with water. Catalysts. 7: 357-362. https://doi.org/10.3390/catal7120357

11.    Bursch M., Mewes J. M., Hansen A., Grimme S., (2022), Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem. Int. Ed. 61: e202205735. https://doi.org/10.1002/anie.202205735

12.    Ghamsari P. A., Samadizadeh M., Mirzaei M., (2020),  Halogenated derivatives of cytidine: Structural analysis and binding affinity.  Theor. Comput. Chem. 19: 2050033. http://dx.doi.org/10.1142/S0219633620500339

13.    MacCormack T. J., Clark R. J., Dang M. K., Ma G., Kelly J. A., Veinot, J. G., Goss G. G., (2012), Inhibition of enzyme activity by nanomaterials: potential mechanisms and implications for nanotoxicity testing. Nanotoxicol. 6: 514-525. http://dx.doi.org/10.3109/17435390.2011.587904

14.    Sánchez-Machado D. I., López-Cervantes J., Sendón R., Sanches-Silva A., (2017), Aloe vera: Ancient knowledge with new frontiers. Trends Food Sci. Technol. 61: 94-102. https://doi.org/10.1016/j.tifs.2016.12.005

15.    Dacrory S., (2021), Antimicrobial activity, DFT calculations, and molecular docking of dialdehyde cellulose/graphene oxide film against COVID-19. J. Polym. Environ. 29: 2248-2260. https://link.springer.com/article/10.1007/s10924-020-02039-5

16.    Aghaei M., Mirzaei M., Ghanadian M., Fallah M., Mahboodi R., (2021), 6-Methoxylated flavonoids: Jacein, and 3-demethyljacein from Centaurea schmidii with their endoplasmic reticulum stress and apoptotic cell death in breast cancer cells along with in-silico analysis. Iran. J. Pharm. Res.  20: 417-422. http://dx.doi.org/10.22037/ijpr.2020.113895.14548

17.    Khan T., Lawrence A. J., Azad I., Raza S., Khan A. R., (2019), Molecular docking simulation with special reference to flexible docking approach. JSM Chem. 6: 1053-1058. https://doi.org/10.47739/2334-1831/1053

18.    Hanwell M. D., Curtis D. E., Lonie D. C., Vandermeersch T., Zurek E., Hutchison G. R., (2012), Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminfo. 4: 1-17. http://dx.doi.org/10.1186/1758-2946-4-17

19.    Remans K., Pauwels K., van Ulsen P., Buts L., Cornelis P., Tommassen J., Van Gelder P., (2010), Hydrophobic surface patches on LolA of Pseudomonas aeruginosa are essential for lipoprotein binding. J. Mol. Biol. 401: 921-930. https://doi.org/10.1016/j.jmb.2010.06.067

20.    Gurung A. B., Bhattacharjee A., Ali M. A., (2016), Exploring the physicochemical profile and the binding patterns of selected novel anticancer Himalayan plant-derived active compounds with macromolecular targets. Info. Med. Unlocked. 5: 1-14. http://dx.doi.org/10.1016/j.imu.2016.09.004

21.    Tanaka S. Y., Narita S. I., Tokuda H., (2007), Characterization of the pseudomonas aeruginosa Lol system as a lipoprotein sorting mechanism. J. Biol. Chem. 282: 13379-13384. https://doi.org/10.1074/jbc.M611840200

22.    Akilan R., Vinnarasi S., Mohanapriya S., Shankar R., (2020), Reconnoitering the nature of interaction and effect of electric field on Pd/Pt/Ni decorated 5-8-5/55–77 defected graphene sheet for hydrogen storage.  Int. J. Hydrogen Energy. 45: 744-763. http://dx.doi.org/10.1016/j.ijhydene.2019.10.170

23.    Sagadevan S., Lett J. A., Weldegebrieal G. K., Garg S., Oh, W. C., Hamizi N. A., Johan M. R., (2021), Enhanced photocatalytic activity of rGO-CuO nanocomposites for the degradation of organic pollutants. Catalysts. 11: 1008-1011. https://doi.org/10.3390/catal11081008

24.    Varma G. D., (2019), Enhanced room temperature sensitivity of Ag-CuO nanobrick/reduced graphene oxide composite for NO2J. Alloys Compd. 806: 1469-1480. http://dx.doi.org/10.1016/j.jallcom.2019.07.355

25.    Rabouw F. T., de Mello Donega C., (2017), Handbook of photoactive semiconductor nanocrystal quantum Dots. ISBN: 978-3-319-51191-7. https://doi.org/10.1007/978-3-319-51192-4

26.    Elugoke S. E., Fayemi O. E., Adekunle A. S., Mamba B. B., Nkambule T. T., Ebenso E. E., (2022), Electrochemical sensor for the detection of dopamine using carbon quantum dots/copper oxide nanocomposite modified electrode. Flat. Chem. 33: 100372. http://dx.doi.org/10.1016/j.flatc.2022.100372

27.    Ahmadi R., Izanloo S., (2022), Development of HAp/GO/Ag coating on 316 LVM implant for medical applications.  J. Mech. Behav. Biomed. Mater. 126: 105075. https://doi.org/10.1016/j.jmbbm.2022.105075

28.    Khan A., Khan F., Shahwan M., Khan M. S., Husain F. M., Rehman M. T., Hassan M. I., Islam A., Shamsi A.,  (2021), Mechanistic insight into the binding of graphene oxide with human serum albumin: Multispectroscopic and molecular docking approach. Spectrochim. Acta A Mol Biomol. Spectrosc 256: 119750. https://doi.org/10.1016/j.saa.2021.119750

29.    Makkar P., Ghosh N. N., (2021), A review on the use of DFT for the prediction of the properties of nanomaterials. RSC Adv. 11: 27897-27924. http://dx.doi.org/10.1016/j.saa.2021.119750

30.    Assatse Y. T., Ejuh G. W., Tchoffo F., Ndjaka J. M. B., (2019), DFT studies of nanomaterials designed by the functionalization of modified carboxylated carbon nanotubes with biguanide derivatives for nanomedical, nonlinear and electronic applications. Chinese J.  Phy. 58: 253-262. http://dx.doi.org/10.1016/j.cjph.2019.01.014

31.    Sadjadi M. A., Sadeghi B., Zare K., (2007), Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes, [NSOX (NPCl2)2]; X = F (1), X = Cl (2). J. Mol. Str.:THEOCHEM. 817: 27-33. https://doi.org/10.1016/j.theochem.2007.04.015