Evaluation of phytochemicals

References

[1]. Maiti, S., Krishnan, D., Barman, G., Ghosh, S. K., & Laha, J. K. (2014). Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. Journal of Analytical Science and Technology, 5(1), 1–7. https://doi.org/10.1186/s40543-014-0040-3.

[2]. Feng, Y., Chen, Q., Yin, Q., Pan, G., Tu, Z., & Liu, L. (2019). Reduced Graphene Oxide Functionalized with Gold Nanostar Nanocomposites for Synergistically Killing Bacteria through Intrinsic Antimicrobial Activity and Photothermal Ablation. ACS Applied Bio Materials, 2(2), 747–756. https://doi.org/10.1021/acsabm.8b00608.

[3]. Adil, M., Khan, T., Aasim, M., Khan, A. A., & Ashraf, M. (2019). Evaluation of the antibacterial potential of silver nanoparticles synthesized through the interaction of antibiotic and aqueous callus extract of Fagonia indica. AMB Express, 9(1). https://doi.org/10.1186/s13568-019-0797-2.

[4]. Bhardwaj, A. K., Kumar, V., Pandey, V., Naraian, R., & Gopal, R. (2019). Bacterial killing efficacy of synthesized rod shaped cuprous oxide nanoparticles using laser ablation technique. SN Applied Sciences, 1, 1-8.

[5]. Bhardwaj, A. K., Shukla, A., Maurya, S., Singh, S. C., Uttam, K. N., Sundaram, S., ... & Gopal, R. (2018). Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: Photon energy as key for size and distribution control. Journal of Photochemistry and Photobiology B: Biology, 188, 42-49.

[6]. Díez-Pascual, A. M. (2020). Antibacterial action of nanoparticle loaded nanocomposites based on graphene and its derivatives: A mini-review. International Journal of Molecular Sciences, 21(10). https://doi.org/10.3390/ijms21103563.

[7]. Thiyagarajulu, N., Arumugam, S., Narayanan, A. L., Mathivanan, T., & Renuka, R. R. (2020). Green synthesis of reduced graphene nanosheets using leaf extract of tridax procumbens and its potential in vitro biological activities. Biointerface Research in Applied Chemistry, 11(3), 9975–9984. https://doi.org/10.33263/BRIAC113.99759984.

[8]. Campbell, B., & Manning, J. (2018). The rise of victimhood culture: Microaggressions, safe spaces, and the new culture wars. The Rise of Victimhood Culture: Microaggressions, Safe Spaces, and the New Culture Wars, 1–265. https://doi.org/10.1007/978-3-319-70329-9.

[9]. Khosroshahi, Z., Kharaziha, M., Karimzadeh, F., & Allafchian, A. (2018). Green reduction of graphene oxide by ascorbic acid. AIP Conference Proceedings, 1920. https://doi.org/10.1063/1.5018941.

[10]. Gaur, M., Misra, C., Bajpayee, A. K., & Bhardwaj, A. K. (2024). Recent advances in agriculture waste for nanomaterial production. Green and Sustainable Approaches Using Wastes for the Production of Multifunctional Nanomaterials, 331-344.

[11]. Balasubramanian, S., Kala, S. M. J., & Pushparaj, T. L. (2020). Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial, and anticancer activities. Journal of Drug Delivery Science and Technology, 57, 101620. https://doi.org/10.1016/j.jddst.2020.101620.

[12]. Su, C., Huang, K., Li, H. H., Lu, Y. G., & Zheng, D. L. (2020). Antibacterial Properties of Functionalized Gold Nanoparticles and Their Application in Oral Biology. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/5616379.

[13]. Veena, S., Devasena, T., Sathak, S. S. M., Yasasve, M., & Vishal, L. A. (2019). Green Synthesis of Gold Nanoparticles from Vitex negundo Leaf Extract: Characterization and In Vitro Evaluation of Antioxidant–Antibacterial Activity. Journal of Cluster Science, 30(6), 1591–1597. https://doi.org/10.1007/s10876-019-01601-z.

[14]. Priya Velammal, S., Devi, T. A., & Amaladhas, T. P. (2016). Antioxidant, antimicrobial and cytotoxic activities of silver and gold nanoparticles synthesized using Plumbago zeylanica bark. Journal of Nanostructure in Chemistry, 6(3), 247–260. https://doi.org/10.1007/s40097-016-0198-x.

[15] Bharti, A. S., Baran, C., Bhardwaj, A. K., Tripathi, S., Pandey, R., & Uttam, K. N. (2024). Domestic waste utilization in the synthesis of functional nanomaterial. In Green and Sustainable Approaches Using Wastes for the Production of Multifunctional Nanomaterials (pp. 61-76). Elsevier.

[16]. Panda, S. K., Mohanta, Y. K., Padhi, L., Park, Y. H., Mohanta, T. K., & Bae, H. (2016). Large scale screening of ethnomedicinal plants for identification of potential antibacterial compounds. Molecules, 21(3), 1–20. https://doi.org/10.3390/molecules21030293.

[17]. Bhardwaj, A. K., Naraian, R., Sundaram, S., & Kaur, R. (2022). Biogenic and Non-Biogenic Waste for the Synthesis of Nanoparticles and Their Applications. In Bioremediation: Green Approaches for a Clean and Sustainable Environment (pp. 207-218). CRC Press.

[18]. Alemayehu, K. (2019). Phytochemical Analysis, Antibacterial and Antioxidant Activity of the Leave Extracts of Ruta Chalepensis. Chemistry and Materials Research, 11(6), 1–7. https://doi.org/10.7176/cmr/11-6-01.

[19]. Kumari, T., & Shukla, V. (2021). Validation of phytochemicals, antioxidant activity and characterization of green synthesized iron nanoparticles: A comparison. Journal of Applied and Natural Science, 13(3), 1102–1110. https://doi.org/10.31018/jans.v13i3.2894.

[20]. Ramaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2014). Assessment of total phenolic, antioxidant, and antibacterial activities of passiflora species. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/167309.

[21]. Jan, S., Khan, M. R., Rashid, U., & Bokhari, J. (2013). Assessment of Antioxidant Potential, Total Phenolics and Flavonoids of Different Solvent Fractions of Monotheca Buxifolia Fruit. Osong Public Health and Research Perspectives, 4(5), 246–254. https://doi.org/10.1016/j.phrp.2013.09.003.

[22]. Szollosi, R., & Szollosi Varga, I. (2002). Total antioxidant power in some species of Labiatae (Adaptation of FRAP method). Acta Biologica Szegediensis, 46(3–4), 125–127.

[23]. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.

[24]. My-Thao Nguyen, T., Anh-Thu Nguyen, T., Tuong-Van Pham, N., Ly, Q. V., Thuy-Quynh Tran, T., Thach, T. D., Nguyen, C. L., Banh, K. S., Le, V. D., Nguyen, L. P., Nguyen, D. T., Dang, C. H., & Nguyen, T. D. (2021). Biosynthesis of metallic nanoparticles from waste Passiflora edulis peels for their antibacterial effect and catalytic activity. Arabian Journal of Chemistry, 14(4), 103096. https://doi.org/10.1016/j.arabjc.2021.103096.

[25]. Kadiyala, N. K., Mandal, B. K., Ranjan, S., & Dasgupta, N. (2018). Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract: Evaluation of its biological applications. Materials Science and Engineering C, 93(June), 191–205. https://doi.org/10.1016/j.msec.2018.07.075.

[26]. Yadav, S., & Sharma, M. (2023). Construction of a cytochrome c nanosensor based on nano-engineered cytochrome oxidase enzyme covalently immobilized on AuNPs-GrNs nanocomposite-modified pencil graphite electrode. Journal of Materials Science, 58(40), 15780–15804. https://doi.org/10.1007/s10853-023-09006-0.

[27]. Marinoiu, A., Raceanu, M., Andrulevicius, M., Tamuleviciene, A., Tamulevicius, T., Nica, S., Bala, D., & Varlam, M. (2020). Low-cost preparation method of well dispersed gold nanoparticles on reduced graphene oxide and electrocatalytic stability in PEM fuel cell. Arabian Journal of Chemistry, 13(1), 3585–3600. https://doi.org/10.1016/j.arabjc.2018.12.009.

[28]. Bhardwaj, A. K., Shukla, A., Mishra, R. K., Singh, S. C., Mishra, V., Uttam, K. N., ... & Gopal, R. (2017). Power and time dependent microwave assisted fabrication of silver nanoparticles decorated cotton (SNDC) fibers for bacterial decontamination. Frontiers in Microbiology, 8, 330.

[29]. Bhardwaj, A. K., & Naraian, R. (2021). Cyanobacteria as biochemical energy source for the synthesis of inorganic nanoparticles, mechanism and potential applications: a review. 3 Biotech, 11(10), 445.

[30]. Rabiee, N., Ahmadi, S., Akhavan, O., & Luque, R. (2022). Silver and Gold Nanoparticles for Antimicrobial Purposes against Multi-Drug Resistance Bacteria. Materials (Basel, Switzerland), 15(5), 1799. https://doi.org/10.3390/ma15051799.

[31]. Sathiyaraj, S., Suriyakala, G., Gandhi, A. D., Babujanarthanam, R., Almaary, K. S., Chen, T. W., & Kaviyarasu, K. (2021). Biosynthesis, characterization, and antibacterial activity of gold nanoparticles. Journal of Infection and Public Health, 14(12), 1842-1847.

[32]. Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a …. Analytical Biochemistry, 269, 337–341. https://doi.org/10.1037/a0037168.

[33]. Ali, A., Wu, H., Ponnampalam, E. N., Cottrell, J. J., Dunshea, F. R., & Suleria, H. A. R. (2021). Comprehensive profiling of most widely used spices for their phenolic compounds through lc-esi-qtof-ms2 and their antioxidant potential. Antioxidants, 10(5). https://doi.org/10.3390/antiox10050721.

[34]. Abel, E. E., John Poonga, P. R., & Panicker, S. G. (2016). Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract. Applied Nanoscience (Switzerland), 6(1), 121–129. https://doi.org/10.1007/s13204-015-0422-x.

[35]. Suthar, J. K., Rokade, R., Pratinidi, A., Kambadkar, R., & Ravindran, S. (2017). Purification of Nanoparticles by Liquid Chromatography for Biomedical and Engineering Applications. American Journal of Analytical Chemistry, 08(10), 617–624. https://doi.org/10.4236/ajac.2017.810044.

[36]. Barnawi, N., Allehyani, S., & Seoudi, R. (2022). Biosynthesis and characterization of gold nanoparticles and its application in eliminating nickel from water. journal of materials research and technology, 17, 537-545. https://doi.org/10.1016/j.jmrt.2021.12.013.

[37]. Nguyen, H. H., Park, J., Kang, S., & Kim, M. (2015). Surface plasmon resonance: A versatile technique for biosensor applications. Sensors (Switzerland), 15(5), 10481–10510. https://doi.org/10.3390/s150510481.

[38]. Srivastava, S., & Pandey, A. (2020). Syngonium podophyllum Leaf Extract Mediated Synthesis and Characterization of Gold Nanoparticles for Biosensing Potential: A Sustainable Approach. Current Nanoscience, 17(1), 81–89. https://doi.org/10.2174/1573413716999200507125437.

[39].  Sadeghi, B., Mohammadzadeh, M., & Babakhani, B. (2015). Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability. Journal of Photochemistry and Photobiology B: Biology, 148, 101–106. https://doi.org/10.1016/j.jphotobiol.2015.03.025.

[40]. Xin Lee, K., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N. B., Bt Mohamad, S. E., & Yew, Y. P. (2016). Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Garcinia mangostana Fruit Peels. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/8489094.

[41]. Abdel-Raouf, N., Al-Enazi, N. M., & Ibraheem, I. B. M. (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian Journal of Chemistry, 10, S3029–S3039. https://doi.org/10.1016/j.arabjc.2013.11.044.

[42]. Sujitha, M. V., & Kannan, S. (2013). Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 102, 15–23. https://doi.org/10.1016/j.saa.2012.09.042.

[43]. Emiru, T. F., & Ayele, D. W. (2017). Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74–79. https://doi.org/10.1016/j.ejbas.2016.11.002.

[44]. Vellaichamy, B., Prakash, P., & Thomas, J. (2018). Synthesis of AuNPs@RGO nanosheets for sustainable catalysis toward nitrophenols reduction. Ultrasonics Sonochemistry, 48(January), 362–369. https://doi.org/10.1016/j.ultsonch.2018.05.012.

[45].  Joshi, S., Siddiqui, R., Sharma, P., Kumar, R., Verma, G., & Saini, A. (2020). Green synthesis of peptide functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-66230-3.

[46]. Osváth, Z., Deák, A., Kertész, K., Molnár, G., Vértesy, G., Zámbó, D., Hwang, C., & Biró, L. P. (2015). The structure and properties of graphene on gold nanoparticles. Nanoscale, 7(12), 5503–5509. https://doi.org/10.1039/c5nr00268k.

[47]. Ali, N. A., & Yasin, F. M. (2019). Synthesis and characterization of silver and gold nanoparticles decorated reduced graphene oxide. AIP Conference Proceedings, 2151(August). https://doi.org/10.1063/1.5124647.

[48]. Yousefimehr, F., Jafarirad, S., Salehi, R., & Zakerhamidi, M. S. (2021). Facile fabricating of rGO and Au/rGO nanocomposites using Brassica oleracea var. gongylodes biomass for non-invasive approach in cancer therapy. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-91352-7.

[49]. Sadeghi, B., Sadjadi, M. A. S., & Pourahmad, A. (2008). Effects of protective agents (PVA & PVP) on the formation of silver nanoparticles. International Journal of Nanoscience and Nanotechnology, 4(1), 3-12.

[50]. Sadeghi, B. (2014). Synthesis of silver nanoparticles using leaves aqueous extract of Nasturtium Officinale (NO) and its antibacterial activity. International Journal of Molecular and Clinical Microbiology, 4(2), 428-434.

[51]. Díez-Pascual, A. M. (2020). Antibacterial action of nanoparticle loaded nanocomposites based on graphene and its derivatives: A mini-review. International Journal of Molecular Sciences, 21(10), 3563.