skip to main content
Menu
Original Article

Evaluation of phytochemicals, anti-oxidative properties and synergistic effects of green fabricated AuNPs-GrNs nanocomposites against selected Gram-positive and Gram-negative bacterial strains

Authors

Abstract

 

Graphene and its derivatives are biocompatible, have a huge surface area, good resistance capacity and thermal conductivity. The unique features listed above are extremely important for killing microorganisms. This paper presents the fabrication of gold nanoparticles (AuNPs), graphene nanosheets (GrNs), and GrNs functionalized with AuNPs by a novel eco-friendly method. These GrNs and AuNPs were fabricated by using leaf extracts of Syzygium cumini and Passiflora edulis respectively, as novel reducing agents. AuNPs were successfully embedded on fabricated GrNs. Embedded AuNPs increased the surface area, sensitivity, and conductivity of GrNs and acted as nano-spacers between sheets. Energy dispersive X-ray showed the Au, C, and O elemental composition in AuNPs-GrNs nanocomposite that confirmed the formation of the nanocomposite. A comparative antibacterial activity of AuNPs, GrNs, and AuNPs-GrNs nanocomposite was studied against Gram+ve (Bacillus subtilis, Staphylococcus aureus), and Gram-ve (Escherichia coli, Pseudomonas aeruginosa) bacterial strains.

 

Graphical Abstract

Read the full text of the article

Keywords

References

[1]. Maiti, S., Krishnan, D., Barman, G., Ghosh, S. K., & Laha, J. K. (2014). Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. Journal of Analytical Science and Technology, 5(1), 1–7. https://doi.org/10.1186/s40543-014-0040-3.

[2]. Feng, Y., Chen, Q., Yin, Q., Pan, G., Tu, Z., & Liu, L. (2019). Reduced Graphene Oxide Functionalized with Gold Nanostar Nanocomposites for Synergistically Killing Bacteria through Intrinsic Antimicrobial Activity and Photothermal Ablation. ACS Applied Bio Materials, 2(2), 747–756. https://doi.org/10.1021/acsabm.8b00608.

[3]. Adil, M., Khan, T., Aasim, M., Khan, A. A., & Ashraf, M. (2019). Evaluation of the antibacterial potential of silver nanoparticles synthesized through the interaction of antibiotic and aqueous callus extract of Fagonia indica. AMB Express, 9(1). https://doi.org/10.1186/s13568-019-0797-2.

[4]. Bhardwaj, A. K., Kumar, V., Pandey, V., Naraian, R., & Gopal, R. (2019). Bacterial killing efficacy of synthesized rod shaped cuprous oxide nanoparticles using laser ablation technique. SN Applied Sciences, 1, 1-8.

[5]. Bhardwaj, A. K., Shukla, A., Maurya, S., Singh, S. C., Uttam, K. N., Sundaram, S., ... & Gopal, R. (2018). Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: Photon energy as key for size and distribution control. Journal of Photochemistry and Photobiology B: Biology, 188, 42-49.

[6]. Díez-Pascual, A. M. (2020). Antibacterial action of nanoparticle loaded nanocomposites based on graphene and its derivatives: A mini-review. International Journal of Molecular Sciences, 21(10). https://doi.org/10.3390/ijms21103563.

[7]. Thiyagarajulu, N., Arumugam, S., Narayanan, A. L., Mathivanan, T., & Renuka, R. R. (2020). Green synthesis of reduced graphene nanosheets using leaf extract of tridax procumbens and its potential in vitro biological activities. Biointerface Research in Applied Chemistry, 11(3), 9975–9984. https://doi.org/10.33263/BRIAC113.99759984.

[8]. Campbell, B., & Manning, J. (2018). The rise of victimhood culture: Microaggressions, safe spaces, and the new culture wars. The Rise of Victimhood Culture: Microaggressions, Safe Spaces, and the New Culture Wars, 1–265. https://doi.org/10.1007/978-3-319-70329-9.

[9]. Khosroshahi, Z., Kharaziha, M., Karimzadeh, F., & Allafchian, A. (2018). Green reduction of graphene oxide by ascorbic acid. AIP Conference Proceedings, 1920. https://doi.org/10.1063/1.5018941.

[10]. Gaur, M., Misra, C., Bajpayee, A. K., & Bhardwaj, A. K. (2024). Recent advances in agriculture waste for nanomaterial production. Green and Sustainable Approaches Using Wastes for the Production of Multifunctional Nanomaterials, 331-344.

[11]. Balasubramanian, S., Kala, S. M. J., & Pushparaj, T. L. (2020). Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial, and anticancer activities. Journal of Drug Delivery Science and Technology, 57, 101620. https://doi.org/10.1016/j.jddst.2020.101620.

[12]. Su, C., Huang, K., Li, H. H., Lu, Y. G., & Zheng, D. L. (2020). Antibacterial Properties of Functionalized Gold Nanoparticles and Their Application in Oral Biology. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/5616379.

[13]. Veena, S., Devasena, T., Sathak, S. S. M., Yasasve, M., & Vishal, L. A. (2019). Green Synthesis of Gold Nanoparticles from Vitex negundo Leaf Extract: Characterization and In Vitro Evaluation of Antioxidant–Antibacterial Activity. Journal of Cluster Science, 30(6), 1591–1597. https://doi.org/10.1007/s10876-019-01601-z.

[14]. Priya Velammal, S., Devi, T. A., & Amaladhas, T. P. (2016). Antioxidant, antimicrobial and cytotoxic activities of silver and gold nanoparticles synthesized using Plumbago zeylanica bark. Journal of Nanostructure in Chemistry, 6(3), 247–260. https://doi.org/10.1007/s40097-016-0198-x.

[15] Bharti, A. S., Baran, C., Bhardwaj, A. K., Tripathi, S., Pandey, R., & Uttam, K. N. (2024). Domestic waste utilization in the synthesis of functional nanomaterial. In Green and Sustainable Approaches Using Wastes for the Production of Multifunctional Nanomaterials (pp. 61-76). Elsevier.

[16]. Panda, S. K., Mohanta, Y. K., Padhi, L., Park, Y. H., Mohanta, T. K., & Bae, H. (2016). Large scale screening of ethnomedicinal plants for identification of potential antibacterial compounds. Molecules, 21(3), 1–20. https://doi.org/10.3390/molecules21030293.

[17]. Bhardwaj, A. K., Naraian, R., Sundaram, S., & Kaur, R. (2022). Biogenic and Non-Biogenic Waste for the Synthesis of Nanoparticles and Their Applications. In Bioremediation: Green Approaches for a Clean and Sustainable Environment (pp. 207-218). CRC Press.

[18]. Alemayehu, K. (2019). Phytochemical Analysis, Antibacterial and Antioxidant Activity of the Leave Extracts of Ruta Chalepensis. Chemistry and Materials Research, 11(6), 1–7. https://doi.org/10.7176/cmr/11-6-01.

[19]. Kumari, T., & Shukla, V. (2021). Validation of phytochemicals, antioxidant activity and characterization of green synthesized iron nanoparticles: A comparison. Journal of Applied and Natural Science, 13(3), 1102–1110. https://doi.org/10.31018/jans.v13i3.2894.

[20]. Ramaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2014). Assessment of total phenolic, antioxidant, and antibacterial activities of passiflora species. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/167309.

[21]. Jan, S., Khan, M. R., Rashid, U., & Bokhari, J. (2013). Assessment of Antioxidant Potential, Total Phenolics and Flavonoids of Different Solvent Fractions of Monotheca Buxifolia Fruit. Osong Public Health and Research Perspectives, 4(5), 246–254. https://doi.org/10.1016/j.phrp.2013.09.003.

[22]. Szollosi, R., & Szollosi Varga, I. (2002). Total antioxidant power in some species of Labiatae (Adaptation of FRAP method). Acta Biologica Szegediensis, 46(3–4), 125–127.

[23]. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.

[24]. My-Thao Nguyen, T., Anh-Thu Nguyen, T., Tuong-Van Pham, N., Ly, Q. V., Thuy-Quynh Tran, T., Thach, T. D., Nguyen, C. L., Banh, K. S., Le, V. D., Nguyen, L. P., Nguyen, D. T., Dang, C. H., & Nguyen, T. D. (2021). Biosynthesis of metallic nanoparticles from waste Passiflora edulis peels for their antibacterial effect and catalytic activity. Arabian Journal of Chemistry, 14(4), 103096. https://doi.org/10.1016/j.arabjc.2021.103096.

[25]. Kadiyala, N. K., Mandal, B. K., Ranjan, S., & Dasgupta, N. (2018). Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract: Evaluation of its biological applications. Materials Science and Engineering C, 93(June), 191–205. https://doi.org/10.1016/j.msec.2018.07.075.

[26]. Yadav, S., & Sharma, M. (2023). Construction of a cytochrome c nanosensor based on nano-engineered cytochrome oxidase enzyme covalently immobilized on AuNPs-GrNs nanocomposite-modified pencil graphite electrode. Journal of Materials Science, 58(40), 15780–15804. https://doi.org/10.1007/s10853-023-09006-0.

[27]. Marinoiu, A., Raceanu, M., Andrulevicius, M., Tamuleviciene, A., Tamulevicius, T., Nica, S., Bala, D., & Varlam, M. (2020). Low-cost preparation method of well dispersed gold nanoparticles on reduced graphene oxide and electrocatalytic stability in PEM fuel cell. Arabian Journal of Chemistry, 13(1), 3585–3600. https://doi.org/10.1016/j.arabjc.2018.12.009.

[28]. Bhardwaj, A. K., Shukla, A., Mishra, R. K., Singh, S. C., Mishra, V., Uttam, K. N., ... & Gopal, R. (2017). Power and time dependent microwave assisted fabrication of silver nanoparticles decorated cotton (SNDC) fibers for bacterial decontamination. Frontiers in Microbiology, 8, 330.

[29]. Bhardwaj, A. K., & Naraian, R. (2021). Cyanobacteria as biochemical energy source for the synthesis of inorganic nanoparticles, mechanism and potential applications: a review. 3 Biotech, 11(10), 445.

[30]. Rabiee, N., Ahmadi, S., Akhavan, O., & Luque, R. (2022). Silver and Gold Nanoparticles for Antimicrobial Purposes against Multi-Drug Resistance Bacteria. Materials (Basel, Switzerland), 15(5), 1799. https://doi.org/10.3390/ma15051799.

[31]. Sathiyaraj, S., Suriyakala, G., Gandhi, A. D., Babujanarthanam, R., Almaary, K. S., Chen, T. W., & Kaviyarasu, K. (2021). Biosynthesis, characterization, and antibacterial activity of gold nanoparticles. Journal of Infection and Public Health, 14(12), 1842-1847.

[32]. Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a …. Analytical Biochemistry, 269, 337–341. https://doi.org/10.1037/a0037168.

[33]. Ali, A., Wu, H., Ponnampalam, E. N., Cottrell, J. J., Dunshea, F. R., & Suleria, H. A. R. (2021). Comprehensive profiling of most widely used spices for their phenolic compounds through lc-esi-qtof-ms2 and their antioxidant potential. Antioxidants, 10(5). https://doi.org/10.3390/antiox10050721.

[34]. Abel, E. E., John Poonga, P. R., & Panicker, S. G. (2016). Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract. Applied Nanoscience (Switzerland), 6(1), 121–129. https://doi.org/10.1007/s13204-015-0422-x.

[35]. Suthar, J. K., Rokade, R., Pratinidi, A., Kambadkar, R., & Ravindran, S. (2017). Purification of Nanoparticles by Liquid Chromatography for Biomedical and Engineering Applications. American Journal of Analytical Chemistry, 08(10), 617–624. https://doi.org/10.4236/ajac.2017.810044.

[36]. Barnawi, N., Allehyani, S., & Seoudi, R. (2022). Biosynthesis and characterization of gold nanoparticles and its application in eliminating nickel from water. journal of materials research and technology, 17, 537-545. https://doi.org/10.1016/j.jmrt.2021.12.013.

[37]. Nguyen, H. H., Park, J., Kang, S., & Kim, M. (2015). Surface plasmon resonance: A versatile technique for biosensor applications. Sensors (Switzerland), 15(5), 10481–10510. https://doi.org/10.3390/s150510481.

[38]. Srivastava, S., & Pandey, A. (2020). Syngonium podophyllum Leaf Extract Mediated Synthesis and Characterization of Gold Nanoparticles for Biosensing Potential: A Sustainable Approach. Current Nanoscience, 17(1), 81–89. https://doi.org/10.2174/1573413716999200507125437.

[39].  Sadeghi, B., Mohammadzadeh, M., & Babakhani, B. (2015). Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability. Journal of Photochemistry and Photobiology B: Biology, 148, 101–106. https://doi.org/10.1016/j.jphotobiol.2015.03.025.

[40]. Xin Lee, K., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N. B., Bt Mohamad, S. E., & Yew, Y. P. (2016). Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Garcinia mangostana Fruit Peels. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/8489094.

[41]. Abdel-Raouf, N., Al-Enazi, N. M., & Ibraheem, I. B. M. (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian Journal of Chemistry, 10, S3029–S3039. https://doi.org/10.1016/j.arabjc.2013.11.044.

[42]. Sujitha, M. V., & Kannan, S. (2013). Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 102, 15–23. https://doi.org/10.1016/j.saa.2012.09.042.

[43]. Emiru, T. F., & Ayele, D. W. (2017). Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74–79. https://doi.org/10.1016/j.ejbas.2016.11.002.

[44]. Vellaichamy, B., Prakash, P., & Thomas, J. (2018). Synthesis of AuNPs@RGO nanosheets for sustainable catalysis toward nitrophenols reduction. Ultrasonics Sonochemistry, 48(January), 362–369. https://doi.org/10.1016/j.ultsonch.2018.05.012.

[45].  Joshi, S., Siddiqui, R., Sharma, P., Kumar, R., Verma, G., & Saini, A. (2020). Green synthesis of peptide functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-66230-3.

[46]. Osváth, Z., Deák, A., Kertész, K., Molnár, G., Vértesy, G., Zámbó, D., Hwang, C., & Biró, L. P. (2015). The structure and properties of graphene on gold nanoparticles. Nanoscale, 7(12), 5503–5509. https://doi.org/10.1039/c5nr00268k.

[47]. Ali, N. A., & Yasin, F. M. (2019). Synthesis and characterization of silver and gold nanoparticles decorated reduced graphene oxide. AIP Conference Proceedings, 2151(August). https://doi.org/10.1063/1.5124647.

[48]. Yousefimehr, F., Jafarirad, S., Salehi, R., & Zakerhamidi, M. S. (2021). Facile fabricating of rGO and Au/rGO nanocomposites using Brassica oleracea var. gongylodes biomass for non-invasive approach in cancer therapy. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-91352-7.

[49]. Sadeghi, B., Sadjadi, M. A. S., & Pourahmad, A. (2008). Effects of protective agents (PVA & PVP) on the formation of silver nanoparticles. International Journal of Nanoscience and Nanotechnology, 4(1), 3-12.

[50]. Sadeghi, B. (2014). Synthesis of silver nanoparticles using leaves aqueous extract of Nasturtium Officinale (NO) and its antibacterial activity. International Journal of Molecular and Clinical Microbiology, 4(2), 428-434.

[51]. Díez-Pascual, A. M. (2020). Antibacterial action of nanoparticle loaded nanocomposites based on graphene and its derivatives: A mini-review. International Journal of Molecular Sciences, 21(10), 3563.