10.57647/ijrowa-zetg-p321

Cymbopogon citratus biochar as a fertilizing and remediating agent for soils with high copper content

  1. Postgraduate Program in Processes Engineering and Technologies (PGEPROTEC), University of Caxias do Sul, Caxias do Sul, RS, Brazil
  2. Postgraduate Program in Processes Engineering and Technologies (PGEPROTEC), Course of Agronomy, and Laboratory of Soil-Plant Studies (LESPA), University of Caxias do Sul, Caxias do Sul, RS, Brazil
  3. Course of Agronomy and Laboratory of Soil-Plant Studies (LESPA), University of Caxias do Sul, Caxias do Sul, RS, Brazil
  4. Course of Agronomy, University of Caxias do Sul, Caxias do Sul, RS, Brazil
Cymbopogon citratus biochar as a fertilizing and remediating agent for soils with high copper content

Received: 2024-03-06

Revised: 2024-06-13

Accepted: 2024-08-10

Published in Issue 2024-10-03

How to Cite

Rech Bisi, V. S., Silvestre, W. P., Tramontin, M. H., Damiani Conte, E., Godinho, M., & Fernandes Pauletti, G. (2024). Cymbopogon citratus biochar as a fertilizing and remediating agent for soils with high copper content. International Journal of Recycling of Organic Waste in Agriculture, 13(5). https://doi.org/10.57647/ijrowa-zetg-p321

PDF views: 191

Abstract

Purpose: The use of biochar and its products has been increasing in recent years. However, although being studied, most of the potential of biochar to be used as a remediating and fertilizing agent is still unclear. Given this, the present work aimed to assess the effect of different concentrations of Cymbopogon citratus (lemongrass) biomass applied to soil contaminated with Cu.

Method: Using natural soil, seven treatments were tested, with three replicates each: soil pH 4.7 (T1), soil pH 6.0 (T2), soil pH 6.0, and adding 5 wt.% biochar (T3), soil with 50 mg∙kg-1 Cu (T4), soil at pH 6.0 with 50 mg∙kg-1 Cu (T5), soil with 50 mg∙kg-1 Cu and addition of 5 wt.% biochar (T6) and soil with 50 mg∙kg-1 Cu and addition of 10 wt.% biochar (T7). The treatments were incubated for 30 days in 30 cm³ containers. Afterward, the soil and the leached solution were analyzed. Subsequently, the incubated soil was transferred to recipients, and seedlings of Catharantus roseus were transplanted, totaling twelve plants per treatment. After 60 days, the plants were evaluated according to the biometric parameters of plant size and root size, root volume, and fresh and dry mass of the plant and roots. The contents of macronutrients and Cu in plant tissue were also determined.

Results: The data showed that C. citratus biochar acted as a soil acidity-neutralizing agent at 5 wt.% and 10 wt.%. Adding biochar increased all biometric parameters of C. roseus seedlings. Using the biochar also reduced the Cu levels in the plant tissue, although the treatment with 10 wt.% biochar had the highest copper content in the leachate.

Conclusion: According to this study, C. citratus biochar has the potential to be used as soil fertilizer and remediating agent.

Research Highlights:

  • Lemongrass biochar was applied in the soil at 5 wt.% and 10 wt.%.
  • Biochar had a soil acidity-neutralizing property, similar to lime.
  • The addition of biochar enhanced the growth of Catharantus roseus
  • Biochar addition reduced Cu uptake by plants, although it increased Cu content in the leachate.
  • Lemongrass biochar can be envisaged as a potential soil fertilizer and remediating agent.

Keywords

  • Heavy metals,
  • Leachate,
  • Micronutrients,
  • Phytotoxicity,
  • Soil contamination

References

  1. Abdullah R, Ishak CF, Osman N, Halim NSA, Panhwar QA (2021) Determining the characteristics and potential of plant-based biochars to reduce copper uptake in maize. Bragantia 80:e2221. https://doi.org/10.1590/1678-4499.20200389
  2. Al Masud MA, Shin WS, Sarker A, Septian A, Das K, Deepo DM, Iqbal MA, Islam ARMT, Malafaia G (2023) A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. Sci Total Environ 904:166813. https://doi.org/10.1016/j.scitotenv.2023.166813
  3. Albuquerque TCS (2002) Nutrição da Cultura da Videira. Embrapa Semi-Árido, Petrolina
  4. Anvisa: Agência Nacional de Vigilância Sanitária (2019) Farmacopéia Brasileira – Volume II. Anvisa, Brasilia.Barbosa ES (2020) Potencial de Catharanthus roseus para fitorremediação de metais em lodo de esgoto e otimização de metodologia para especiação de cromo em lodo de esgoto. Doctoral dissertation, Universidade de Minas Gerais, Brazil
  5. Caires SM, Fontes MPF, Fernandes RBA, Neves JCL, Fontes RLF (2011) Desenvolvimento de mudas de cedro-rosa em solo contaminado com cobre: tolerância e potencial para fins de fitoestabilização do solo. Rev Árvore 35:1181-1188. https://doi.org/10.1590/S0100-67622011000700004
  6. Cárdenas -Aguiar E, Gasco G, Paz-Ferreiro J, Mendez A (2017) The effect of biochar and compost from urban organic waste on plant biomass and properties of an artificially copper polluted soil. Int Biodeter Biodegr 124:223-232. https://doi.org/10.1016/j.ibiod.2017.05.014
  7. Casali CA, Moterle DF, Rheinheimer DS, Brunetto G, Corcini ALM, Kamiski J, Melo GWB (2008) Formas e dessorção de cobre em solos cultivados com videira na Serra Gaúcha do Rio Grande do Sul. Rev Bras Ciên Solo 32:1479-1487. https://doi.org/10.1590/S0100-06832008000400012
  8. Fernandes SGS (2021) Materiais adsorventes e suas aplicações: uma revisão bibliográfica. Monograph, Universidade Federal Rural do Semi-Árido, Angico.
  9. Ferreira SD, Manera C, Silvestre WP, Pauletti GF, Altafini CR, Godinho M (2018) Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment. Waste Biomass Valor 10:3089-3100. https://doi.org/10.1007/s12649-018-0347-1
  10. Gascó G, Paz-Ferreiro J, Méndez A (2012) Thermal analysis of soil amended with sewage sludge and biochar from sewage sludge pyrolysis. J Therm Anal Calorim 108:769-775. https://doi.org/10.1007/s10973-011-2116-2
  11. Gasparin A (2023) Contaminação de solos por cobre no brasil: revisão sobre fontes, riscos ecológicos e mitigação. Master’s thesis, Universidade Tecnológica Federal do Paraná, Medianeira
  12. Gonzaga MIS, Matias MIAS, Andrade KR, Jesus AN, Cunha GC, Andrade RS, Santos JCJ (2020) Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper contaminated soil. Chemosphere 240:124828. https://doi.org/10.1016/j.chemosphere.2019.124828
  13. Ippolito JA, Berry CM, Strawn DG, Novak JM, Levine J, Harley A (2017) Biochars reduce mine land soil bioavailable metals. J Environ Qual 46:411-419. https://doi.org/10.2134/jeq2016.10.0388
  14. Kavitha B, Venkata P, Reddy L, Kim B, Lee SS, Pandey SK, Kim K (2018) Benefits and imitations of biochar amendment in agricultural soils: A review. J Environ Manag 227:146-154. https://doi.org/10.1016/j.jenvman.2018.08.082
  15. Kocsis T, Ringer M, Biró B (2022) Characteristics and applications of biochar in soil–plant systems: A short review of benefits and potential drawbacks. Appl Sci 12:4051. https://doi.org/10.3390/app12084051
  16. Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R (2016) Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environ Int 87:1-12. https://doi.org/10.1016/j.envint.2015.10.018
  17. Lahori AH, Zhanyu G, Zengqiang Z, Ronghua L, Mahar A, Awasthi MK, Feng S, Sial TA, Kumbhar F, Ping W, Shuncheng J (2017) Use of biochar as an amendment for remediation of heavy metal-contaminated soils: Prospects and challenges. Pedosphere 27:991-1014. https://doi.org/10.1016/S1002-0160(17)60490-9
  18. Lehmann J, Joseph S (2009) Biochar for environmental management: Science and technology. Earthscan, London
  19. Lei H, Ren S, Julson J (2009) The effects of reaction temperature and time and particle size of corn stover on microwave pyrolysis. Energy Fuels 23:3254-3261. https://doi.org/10.1021/ef9000264
  20. Liang L, Xi F, Tan W, Meng X, Hu B, Wang X (2021) Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3:255–281. https://doi.org/10.1007/s42773-021-00101-6
  21. Liu M, Almatrafi E, Zhang Y, Xu P, Song B, Zhou C, Zeng G, Zhu Y (2022) A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: Applications and practical evaluations. Sci Total Environ 806:150531. https://doi.org/10.1016/j.scitotenv.2021.150531
  22. Luo L, Wang J, Lv J, Liu Z, Sun T, Yang Y, Zhu YG (2023) Carbon sequestration strategies in soil using biochar: advances, challenges, and opportunities. Environ Sci Technol 57: 11357–11372. https://doi.org/10.1021/acs.est.3c02620
  23. Malavolta E, Vitti GC, Oliveira SA (1997) Avaliação do estado nutricional das plantas: princípios e aplicações. Potafos, Piracicaba
  24. Martins CAS, Nogueira NO, Ribeiro PH, Rigo MM, Candido AO (2011) A dinâmica de metais-traço no solo. Rev Bras Agrociênc 17:383-391
  25. Meier S, Moore F, González ME, Medina J, Campos P, Khan N, Cumming J, Sanhueza M, Mejías J, Morales A, Hirzel J, Seguel A (2021) Effects of three biochars on copper immobilization and soil microbial communities in a metal-contaminated soil using a metallophyte and two agricultural plants. Environ Geochem Health 43:1441-1456. https://doi.org/10.1007/s10653-019-00436-x
  26. Melo GW, Mezacasa J, Rodighero K, Oliveira PD, Albarello JB, Dal Magro R (2013) A calagem pode mitigar os efeitos da fitotoxicidade do cobre em aveia branca? Proceedings of the 34th Congresso Brasileiro de Ciência do Solo, Florianópolis
  27. Nogueira EMC, Ferrari, JT, Töfoli JG, Domingues RJ (2017) Doenças fúngicas da videira: sintomas e manejo. Instituto Biológico, São Paulo
  28. Ohland T Lana, MC, Frandoloso JF (2019) Diferentes doses de calcário aumentam a absorção de nutrientes pelo pinhão-manso. Ciênc Flor 29:1333-1342. https://doi.org/10.5902/1980509835423
  29. Oliveira CCA, Santos JS (2021) Active compounds of lemon grass (Cymbopogon citratus): A review. Res Soc Develop 10:e263101220281. https://doi.org/10.33448/rsd-v10i12.20281
  30. Puga AP (2015) Biocarvão na mitigação da toxicidade de metais pesados em solos de área de mineração. Doctoral dissertation, Instituto Agronômico de Campinas.
  31. Qiu M, Liu L, Qian L, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X (2022) Biochar for the removal of contaminants from soil and water: A review. Biochar 4:19. https://doi.org/10.1007/s42773-022-00146-1
  32. Reis A, Henrique IM (2007) Phytophthora nicotianae e Rhizoctonia solani: dois novos patógenos da vinca no Brasil. Embrapa Hortaliças, Brasilia
  33. Rio Grande do Sul (2023) Atlas Socioeconômico do Rio Grande do Sul. https://atlassocioeconomico.rs.gov.br/uva-e-maca. Accessed 15 July 2023
  34. Scheibe JSB, Paese BT, Palermo N, Melo GWB, Sganagatta V (2022) Influência do biocarvão na eficiência nutricional da aveia preta cultivada em condições de solo com alto teor de cobre. Proceedings of the 3rd Simpósio de Fruticultura da Região Sul, Chapecó
  35. Silva DJ, Faria CMB, Albuquerque TCS (2010) Sistema de produção: cultivo da videira. Embrapa Semi-Árido, Petrolina
  36. Silvestre WP, Galafassi PL, Ferreira SD, Godinho M, Pauletti GF, Baldasso C (2018) Fodder radish seed cake biochar for soil amendment. Environ Sci Pollut Res 25:25143-25154. https://doi.org/10.1007/s11356-018-2571-4
  37. Sousa AATC (2015) Biochar de lodo de esgoto: efeitos no solo e na planta no cultivo de rabanete. Master’s thesis, Universidade de Brasília.
  38. Streck EV, Kämpf N, Dalmolin RSD, Klamt E, Nascimento PC, Schneider P, Pinto LFS (2008) Solos do Rio Grande do Sul. Emater, Porto Alegre.
  39. Tang Y, Wang C, Holm PE, Hansen HCB, Bandt KK (2023) Impacts of biochar materials on copper speciation, bioavailability, and toxicity in chromated copper arsenate polluted soil. J Haz Mat 459:132067. https://doi.org/10.1016/j.jhazmat.2023.132067
  40. Tedesco MJ, Gianello C, Bissani CA, Bonhen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais. Departamento de Solos UFRGS, Porto Alegre.
  41. Vithanage M, Herath I, Almaroai Y, Rajapaksha A, Huang L, Sung J, Lee S, Ok Y (2017) Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil. Environ Geochem Health 39:1409-1420. https://doi.org/10.1007/s10653-017-9941-6
  42. Yang S, Chen X, Jiang Z, Ding J, Sun X, Xu J (2020) Effects of biochar application on soil organic carbon composition and enzyme activity in paddy soil under water-saving irrigation. Int J Environ Res Public Health 17: 333. https://doi.org/10.3390%2Fijerph17010333
  43. Yang Y, Sun K, Han L, Chen Y, Liu J, Xing B (2022) Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biol Biochem 169:108657. https://doi.org/10.1016/j.soilbio.2022.108657