10.57647/ijrowa-2026-17419

Application of biochar and impacts on corn (Zea Mays L.) agronomic development and nutrient availability in soil under tropical climate

  1. Instituto de Ciencias Ambientales de la Orinoquia Colombiana ICAOC, Facultad de Ciencias Básicas e Ingeniería, Universidad de los Llanos, Campus Barcelona Villavicencio, Colombia
  2. Facultad de Ciencias Agropecuarias y Recursos Naturales, Grupo de Investigación Innovación en Sistemas Agrícolas y Forestales, Universidad de los Llanos, Villavicencio, Colombia
  3. Centro de Innovación y Tecnología Instituto Colombiano del Petróleo (ICP), Ecopetrol S.A., Bucaramanga, Santander, Colombia
  4. High Technical School of Agricultural Engineers of Ciudad Real, University of Castilla-La Mancha, Castilla-La Mancha, Madrid, Spain
  5. Universidad Autónoma de Madrid, 28049 Madrid, Spain
Application of biochar and impacts on corn (Zea Mays L.) agronomic development and nutrient availability in soil under tropical climate

Received: 2025-04-07

Revised: 2025-06-21

Accepted: 2025-07-30

Published in Issue 2025-09-01

How to Cite

Trujillo-González, J. M., Mahecha-Pulido, J. D., Astroz-Cano, A. M., Torres-Mora, M. A., Silva-Parra, A., Serrano-Gómez, M., Castillo-Monroy, E. F., García-Navarro, F. J., & Jiménez-Ballesta, R. (2025). Application of biochar and impacts on corn (Zea Mays L.) agronomic development and nutrient availability in soil under tropical climate. International Journal of Recycling of Organic Waste in Agriculture. https://doi.org/10.57647/ijrowa-2026-17419

PDF views: 17

Abstract

Purpose: Soil amendments such as biochar, a by-product of renewable energy production from organic waste, have the potential to improve crop yields by increasing water-holding capacity and soil nutrient content. However, data on the impact of biochar on corn and tropical environments are rare. The aim of this work was to evaluate the effect of biochar produced from coffee residues on maize (Zea mays L.) in acid soils exposed to a tropical climate.

Method: A field experiment quantifying maize growth was conducted in a randomised complete block design with four replications. Acid soils were amended with four biochar rates (0%, 1%, 2% and 10% by volume). After maize harvest, soil was collected and soil properties, phenological and performance variables were measured. 

Results: The physico-chemical effects of the biochar applied to the soil showed that acidic soils changed to neutral or moderately acidic soils. Water holding capacity, cation exchange capacity, organic carbon, phosphorus and potassium contents increased significantly.

Conclusion: Our results show that biochar has positive effects on soil properties and plant growth, suggesting that biochar as a soil amendment has the potential to improve the quality of poor soils and nutrient availability. These results could theoretically support the idea of applying biochar to soils to increase nutrient stocks, reduce nutrient leaching and improve crop yields.

Highlights

·       Coffee residue biochar enhances corn growth and phenology.

·       Biochar increased soil water holding, cation exchange, organic C, P, and K.

·       Biochar increased maize yield and partial nutrient productivity.

·       Biochar is effective for corn seedling growth without irrigation or N fertilizer.

·       Equatorial acidic soils benefit from biochar amendment.

Keywords

  • Biochar,
  • Corn crops,
  • Physico-chemical properties,
  • Plant growth,
  • Recycling,
  • Tropical environment

References

  1. Alkhasha A, Al-Omran A, Aly A (2018) Effects of biochar and synthetic polymer on the hydro-physical properties of sandy soils. Sustainability 10. 4642. DOI: https://doi.org/10,3390/su10124642.
  2. Alling V, Hale SE, Martinsen V, Mulder J, Smebye A, Breedveld GD, Cornelissen G (2014) The role of biochar in retaining nutrients in amended tropical soils. J Plant Nutr Soil Sci 177: 671–680.
  3. DOI: https://doi.org/10.1016/j.chemosphere.2013.10.071
  4. Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research 111(1-2):81–84.
  5. DOI: https://doi.org/10.1016/j.fcr.2008.10.008
  6. Basiri Jahromi N, Walker F, Fulcher A, Altland J, Wright WC (2018) Growth response, mineral nutrition, and water utilization of container-grown woody ornamentals grown in biochar-amended pine bark. HortScience 53:347–353. DOI: https://doi.org/10.21273/HORTSCI12643-17
  7. Basiri Jahromi N, Lee J, Fulcher A, Walker F, Jagadamma S, Arelli P (2020) Effect of biochar application on quality of flooded sandy soils and corn growth under greenhouse conditions. Agrosyst Geosci Environ 3: e20028. DOI: https://doi.org/10.1002/agg2,20028
  8. Blackwell P, Krull E, Butler G, Herbert A, Solaiman Z (2010) Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: An agronomic and economic perspective. Soil Res 48:531–545. DOI: https://doi.org/10.1071/SR10014
  9. Blackwell P, Joseph S, Munroe P, Anawar H.M, Storer P, Gilkes R J, Solaiman Z M (2015) Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere 25(5): 686-695. DOI: https://doi.org/10.1016/S1002-0160(15)30049-7
  10. Borchard N, Siemens J, Ladd B, Möller A, Amelung W (2014) Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Tillage Res 144:84–194. DOI: https://doi.org/10.1016/j.still.2014.07.016
  11. Brockhoff SR, Christians NE, Killorn RJ, Horton R, Davis DD (2010) Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agronomy 102:1627–1631. DOI: http://doi,org/10,2134/agronj2010,0188
  12. Butnan S, Deenik JL, Toomsan B, Antal MJ, Vityakon P (2015) Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237:105-116. DOI: https://doi.org/10.1016/j.geoderma.2014.08.010
  13. Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228.
  14. DOI: https://doi.org/10.1016/j.biortech.2010.02.052.
  15. Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle. J Environ Qual 39:1218–1223.
  16. DOI: http://doi,org/10,2134/jeq2010,020.
  17. Chen L, Chen XL, Zhou CH, Yang HM, Ji SF, Tong DS, Zhong ZK, Yu WH, Chu MQ (2017) Environmental-friendly montmorillonite-biochar composites: Easy production and tunable adsorption-release of ammonium and phosphate. J Clean Prod 156:648-659.
  18. DOI: https://doi.org/10.1016/j.jclepro.2017.04.050.
  19. Choudhary TK, Khan KS, Hussain Q, Ashfaq M (2021) Nutrient availability to Maize crop (Zea mays L,) in biochar amended alkaline subtropical soil. J Soil Sci Plant Nutr 21:1293–1306.
  20. DOI: https://doi.org/10.1007/s42729-021-00440-0
  21. Deenik J, Cooney M (2016) The potential benefits and limitations of corn cob and sewage sludge biochars in an infertile Oxisol. Sustainability 8: 131. DOI: http://doi,org/10,3390/su8020131
  22. Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X (2016) Biochar to improve soil fertility, A review. Agron Sustain Dev 36(2):1-18. DOI: https://doi.org/10.1007/s13593-016-0372-z
  23. Dong D, Li J, Ying S, Wu J, Han X, Teng Y, Zhou M, Ren Y, Jiang P (2021) Mitigation of Methane emission in a rice paddy field amended with biochar-based slow-release fertilizer. SciTotal Environ 148460. DOI: https://doi.org/10.1016/j.scitotenv.2021.148460
  24. Duku MH, Gu S, Hagan EB (2011) Biochar production potential in Ghana — a review. Renewable and Sustainable Energy Reviews 15(8):3539–3551. DOI: https://doi.org/10.1016/j.rser.2011.05.010
  25. Gao S, DeLuca TH, Cleveland CC (2019) Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Sci Total Environ 654:463–472.
  26. DOI: https://doi.org/10.1016/j.scitotenv.2018.11.124
  27. Glaser B (2014) From molecular to ecosystem level using terra preta and biochar as examples. Agroecol. Ecosyst. Sustain 20: 1. DOI: https://doi.org/10.1201/b17775
  28. Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol Fertil Soils 35: 219–230.
  29. DOI: https://doi.org/10.1007/s00374-002-0466-4
  30. Gorovtsov AV, Minkina TM, Mandzhieva SS, Perelomov LV, Soja G, Zamulina IV, Rajput VD, Sushkova SN, Mohan D, Yao J (2019) The mechanisms of biochar interactions with microorganisms in soil. Environ Geochem Health 42:1–24. DOI: https://doi.org/10.1007/s10653-019-00412-5
  31. Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric Ecosys Environ 206:46–59. DOI: https://doi.org/10.1016/j.agee.2015.03.015
  32. Guo L, Bornø ML, Niu W, Liu F (2020) Biochar amendment improves shoot biomass of tomato seedlings and sustains water relations and leaf gas exchange rates under different irrigation and nitrogen regimes. Agric Water Manag245: 06580. DOI: https://doi.org/10,1016/j,agwat,2020,106580
  33. Haider G, Steffens D, Moser G, Müller C, Kammann CI (2017) Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agricul, Ecosys Environ 237:80–94. DOI: https://doi.org/10.1016/j.agee.2016.12.019
  34. Haque A, Uddin K, Sulaiman M, Amin A, Hossain M, Solaiman Z, Mosharrof M (2021) Biochar with Alternate Wetting and Drying Irrigation: A potential technique for paddy soil management. Agriculture 11: 367. DOI: https://doi.org/10.3390/agriculture11040367
  35. He K, He G, Wang C, Zhang H, Xu Y, Wang S (2020) Biochar amendment improves soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl Soil Ecol 155: 103674.
  36. DOI: https://doi.org/10.1016/j.apsoil.2020.103674
  37. Indrawati USYV (2024) Effect of the combination tanks biochar and chicken manure on availability of nutrients and yields of Purple Eggplant. Int J Recycl Org Waste Agric 14(2).
  38. DOI: https://doi.org/10.57647/ijrowa-vjsm-0w96
  39. Ippolito JA, Laird DA, Busscher WJ (2012) Environmental benefits of biochar. J. Environ. Qual 41(4): 967–972. DOI: https://doi.org/10.1088/1748-9326/aa67bd
  40. Jeffery S, Verheijen FGA, vanderVelde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis, Agricult, Ecosys Environ144:175–187.
  41. Jeffery S, Abalos D, Prodana M, Bastos AC, Van Groenigen JW, Hungate BA, Verheijen F (2017) Biochar boosts tropical but not temperate crop yields. Environ Res Letter 12 (5): 053001.
  42. DOI: https://doi.org/10.1088/1748-9326/aa67bd
  43. Joseph S, Arbestain MC, Lin Y, Munroe P, Chia CH, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh B, Lehmann J, Foidl N, Smernik RJ, Aonnette JE (2010) An investigation into the reactions of biochar in soil. Soil Res 48: 501–515. DOI: https://doi.org/10.1071/SR10009
  44. Khan A, Khan S, Khan MA, Qamar Z, Waqas M (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plant nutrients, and associated health risk: a review. Environ. Sci. Pollut. Res. 22:13772–13799. DOI: https://doi.org/10.1007/s11356-015-4881-0
  45. Kim JS, Sparovek G, Longo RM, De Melo WJ, Crowley D (2007) Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol. Biochem. 39: 684–690.
  46. DOI: https://doi.org/10.1016/j.soilbio.2006.08.010
  47. Kim P, Hensley D, Labbé N (2014) Nutrient release from switchgrass-derived biochar pellets embedded with fertilizers. Geoderma 232:341-351. DOI: https://doi.org/10.1016/j.geoderma.2014.05.017
  48. Kim J, Yoo G, Kim D, Ding W, Kang H (2017) Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Appl Soil Ecol 117:57-62. DOI: https://doi.org/10.1016/j.apsoil.2017.05.006
  49. Kizito S, Luo H, Lu J, Bah H, Dong R, Wu S (2019) Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability 11: 3211.
  50. DOI: http://doi,org/10,3390/su11113211.
  51. Kukwa RE, Kukwa DT, Barnabas SS (2023) Reclamation of poultry litter for the production of biochar. International Journal of Recycling of Organic Waste in Agriculture, 12(1).
  52. DOI: https://doi.org/10.30486/ijrowa.2023.1960315.1490
  53. Kukwa RE, Iortyom BO, Adah CA (2025) Comparative characterization of biochar obtained from cow dung and poultry litter. Int J Recycl Org Waste Agric 14(3).
  54. DOI: https://doi.org/10.57647/ijrowa-2chr-d623
  55. Laghari M, Mirjat MS, Hu Z, Fazal S, Xiao B, Hu M, Guo D (2015) Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena 135: 313–320.
  56. DOI: http://doi,org/10,1016/j,catena,2015,08,013.
  57. Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in terrestrial ecosystems-A review. Mitigation and Adaptation Strategies for Global Change 11:403–427.
  58. DOI: http://doi.org/10.1007/s11027- 005-9006-5
  59. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota. Soil Biol Biochem. A Rev. 43: 1812–1836.
  60. DOI: https://doi.org/10.1016/j.soilbio.2011.04.022
  61. Lehmann J, Joseph S (2015) Biochar for environmental management: An introduction. In Biochar for environmental management (pp. 1-13). Routledge. DOI: https://doi.org/10.4324/9780203762264
  62. Lu HL, Li KW, Nkoh JN, He X, Hong ZN, Xu RK (2022) Effects of the increases in soil pH and pH buffering capacity induced by crop residue biochars on available Cd contents in acidic paddy soils. Chemosphere 301: 134674. DOI: https://doi.org/10.1016/j.chemosphere.2022.134674
  63. Majeed AJ, Dikici H, Demir ÖF (2018) Effect of biochar and nitrogen applications on growth of corn (Zea mays L.) plants. Turkish J Agricul-Food Sci Technol, 6(3):346-351.
  64. DOI: https://doi.org/10.24925/turjaf.v6i3.346-351.1746
  65. Man Y, Wang B, Wang J, Slanỳ M, Yan H, Li P, El-Naggar A, Shaheen SM, Rinklebe J, Feng X (2021) Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environ Int 153: 106527.
  66. DOI: https://doi.org/10.1016/j.envint.2021.106527
  67. Martínez-Gómez Á, Poveda J, Escobar C (2022) Overview of the use of biochar from main cereals to stimulate plant growth. Front Plant Sci 13:912264. DOI: https://doi.org/10.3389/fpls.2022.912264
  68. Melo TM, Bottlinger M, Schulz E, Leandro WM, de Oliveira SB, de Aguiar Filho AM, El. Naggar A, Bolan N, Wang H, Ok YS, Inklebe J (2019) Management of biosolids-derived hydrochar (Sewchar): Effect on plant germination, and farmers' acceptance. J Environ Manag 237:200-214.
  69. DOI: https://doi.org/10.1016/j.jenvman.2019.02.042
  70. Ngoune Tandzi L, Mutengwa CS (2020) Estimation of maize (Zea mays L.) yield per harvest area: Appropriate methods. Agronomy 10(1). DOI: https://doi,org/10.3390/agronomy10010029
  71. Nkoh JN, Baquy MAA, Mia S, Shi R, Kamran MA, Mehmood K, Xu R (2021) A critical-systematic review of the interactions of biochar with soils and the Observable Outcomes. Sustainability 13(24): 13726. DOI: https://doi.org/10.3390/su132413726
  72. Obia A, Mulder J, Martinsen V, Cornelissen G, Børresen T (2016) In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Tillage Resear 155:35–44.
  73. DOI: http://doi,org/10,1016/j,still,2015,08,002
  74. Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5(1): 65–75.
  75. DOI: https://doi.org/10.5194/se-5-65-2014
  76. Soil Survey Staff (2022) Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service.
  77. Qian ZY, Xue SG, Cui MQ, Wu C, Li WC (2021) Arsenic availability and transportation in soil-rice system affected by iron-modified biochar. J Cent S Univ 28 (6):1901-1918.
  78. DOI: https://doi.org/10.1007/s11771-021-4738-2
  79. Qin P, Wang H, Yang X, He L, Müller K, Shahen SM, Xu S., Rinklebe J, Tsang D, Ok YS, Bolan N, Song Z, Che L, Xu X (2018) Bamboo-and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils. Chemosphere 198:450-459.
  80. DOI: https://doi.org/10.1016/j.chemosphere.2018.01.162
  81. Quilliam RS, Glanville HC, Wade SC, Jones DL (2013) Life in the ‘Charosphere’–Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biol Biochem 65:287–293.
  82. DOI: https://doi.org/10.1016/j.soilbio.2013.06.004
  83. Ramlow M, Foster E, J, Del Grosso SJ, Cotrufo MF (2019) Broadcast woody biochar provides limited benefits to deficit irrigation maize in Colorado. Agricul Ecosys Environ 269:71–81.
  84. DOI: https://doi.org/10.1016/j.agee.2018.09.017
  85. Ronsse F, Van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. Gcb Bioenergy 5(2):104-115.
  86. DOI: https://doi.org/10.1111/gcbb.12018
  87. Rutigliano FA, Romano M, Marzaioli R, Baglivo I, Baronti S, Miglietta F, Castaldi S (2014) Effect of biochar addition on soil microbial community in a wheat crop. European J Soil Biol60:9-15.
  88. DOI: https://doi.org/10.1016/j.ejsobi.2013.10.007
  89. Sánchez-Reinoso AD, Ávila-Pedraza EÁ, Restrepo-Díaz H (2020) Use of biochar in agriculture. Acta Biol Colombiana 25(2):327-338. DOI: http://dx.doi.org/10.15446/abc.v25n2.79466
  90. Tanure MMC, da Costa LM, Huiz HA, Fernandes RBA, Cecon PR, Pereira Junior JD, da Luz JMR (2019) Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Tillage Resear 192:164–173.
  91. DOI: http://doi,org/10,1016/j,still,2019,05,007
  92. Trujillo-González JM, Torres-Mora MA, Jiménez-Ballesta RJ, Brevik EC (2022) Spatial variability of the physicochemical properties of acidic soils along an altitudinal gradient in Colombia. Environ Earth Sci 81(4): 108. DOI: https://doi.org/10.1007/s12665-022-10235-w
  93. Trujillo-González JM, Jiménez-Ballesta R, Silva-Parra A, Torres-Mora MA, Navarro FJG (2024) A comprehensive review of composting from coffee waste: Revalori-sation of coffee residue in Colombia. Int J Recycl Org Waste Agric 13(3).
  94. DOI: https://doi.org/10.57647/j.ijrowa.2024.1303.33
  95. Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59:2501–2510. DOI: https://doi.org/10.1021/jf104206c
  96. Xiao L, Meng F (2020) Evaluating the effect of biochar on salt leaching and nutrient retention of Yellow River Delta soil. Soil Use Manag 36 (4):740-750. DOI: https://doi.org/10.1111/sum.12638
  97. Yu L, Lu X, He Y, Brookes PC, Liao H, Xu J (2017) Combined biochar and nitrogen fertilizer reduces soil acidity and promotes nutrient use efficiency by soybean crop. J Soils Sediments 17 (3):599-610.
  98. DOI: https://doi.org/10.1007/s11368-016-1447-9
  99. Wang C, Sun R, Huang R (2021) Highly dispersed iron-doped biochar derived from sawdust for Fenton-like degradation of toxic dyes. J Clean Prod 297: 126681.
  100. DOI: https://doi.org/10.1016/j.jclepro.2021.126681
  101. Wang Z, Wang H, Cao Y (2018) Pb (II) sorption by biochar derived from Cinnamomum camphora and its improvement with ultrasound-assisted alkali activation. Colloids Surf to Physicochem Eng Asp 556:177-184. DOI: https://doi.org/10.1016/j.colsurfa.2018.08.036
  102. Zhang J, Chen Q, You C (2016) Biochar effect on water evaporation and hydraulic conductivity in sandy soil. Pedosphere 26: 265–272. DOI: http://doi,org/10,1016/S1002-0160(15)60041-8