10.57647/ijrowa-2026-17241

Coffee innovation and sustainability – organomineral fertilizers noteworthy results

  1. Instituto de Ciências Agrárias, Universidade Federal de Uberlândia. Uberlândia, Brazil
  2. Instituto de Ciências Agrárias, Universidade Federal de Uberlândia. Monte Carmelo, Brazil
  3. Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo. Piracicaba, Brazil
Coffee innovation and sustainability – organomineral fertilizers noteworthy results

Received: 2024-05-04

Revised: 2025-05-30

Accepted: 2025-07-27

Published in Issue 2025-08-01

How to Cite

Pinheiro da Mota, R., de Camargo, R., Rosa Franco, M. H., Aparecida de Assis, G., Ferraz-Almeida, R., & Miranda Lemes, E. (2025). Coffee innovation and sustainability – organomineral fertilizers noteworthy results. International Journal of Recycling of Organic Waste in Agriculture. https://doi.org/10.57647/ijrowa-2026-17241

PDF views: 38

Abstract

Purpose: Coffee is a highly valued commodity and demands high nutritional inputs for its vegetative and reproductive development. Different sources of fertilizers are used to supply the nutritional needs of the plant. The objective of the present study was to evaluate the response of different sources and doses of special fertilizers compared to conventional mineral fertilizers in coffee plants in two consecutive crop seasons.

Method: A 4×4 factorial scheme was implemented with four fertilizers [conventional mineral, mineral with polymer, organomineral with cellulosic residue (OM-CR), organomineral with sugarcane filter cake (OM-FC)] and four doses (50, 75, 100, and 125% of the recommended dose). Coffee plant growth was evaluated: plant height, canopy diameter, growth of plagiotropic branches, and chlorophyll content. Nutrient contents in the soil and leaves, as well as coffee bean productivity, were also analyzed.

Results: In biometric data, mineral and organomineral fertilizers showed  responses that were equivalent to or superior to those of the control, even when using reduced OMF doses.

For leaf N, P, and K content and soil P and K contents, the organomineral fertilizers performed better than conventional mineral fertilizers, especially in the second crop season.

There were no significant differences among the fertilizers and doses for coffee bean productivity.

Conclusion: The organomineral fertilizers, regardless of the dose, showed  comparable or improved resultscompared to the conventional mineral fertilizer for the plant growth variables, potentially replacing traditional mineral fertilizers in the nutritional management of coffee crops. These results are the first report on coffee production using special fertilizers on two consecutive harvests.

Highlights:

·       Organomineral fertilizers are under development, and consistent studies are needed in coffee crops.

·       Organomineral fertilizers on coffee development present superior growth responses at reduced doses.

·       Coffee leaf N, P, K and soil P, K responded more to organomineral fertilizers in the second season.

·       No significant differences were detected among fertilizers and doses for coffee bean productivity.

·       Organominerals can replace mineral fertilizers in the nutritional management of coffee crops.

Keywords

  • Organomineral fertilizer,
  • Cellulosic source,
  • Sugarcane filter cake,
  • Coffea arabica,
  • Coffee bean production

References

  1. Aguiar BH, Leme PH (2020) Convergência estratégica e indicação geográfica como ferramentas de desenvolvimento do cerrado mineiro. INGI 4(1):575-594. http://repositorio.ufla.br/jspui/handle/1/43469. Accessed 14 February 2024
  2. Aguilar AS, Cardoso AF, Lima LC, Luz JMQ, Rodrigues T, Lana RMQ (2019) Influence of organomineral fertilization in the development of the potato crop cv. Cupid. Biosci J 35:199-210. https://doi.org/10.14393/BJ-v35n1a2019-41740
  3. Almeida MJ, Sousa CM, Rocha MC, José VDMBE, Polidoro C (2019) Reposição deficitária de água e adubação com organomineral no crescimento e produção de tomateiro industrial. Irriga v 24:69-85. https://doi.org/10.15809/irriga.2019v24n1p69-85
  4. Antunes FZ (1986) Caracterização climática do estado de Minas Gerais. Belo Horizonte: Informe Agropecuário. 12:9-13.https://www.scienceopen.com/document?vid=df0072bb-d329-4fbe-9de8-d1a5e20e9cfb. Accessed 23 June 2025.
  5. Araujo MDM, Souza HA, Benites VM, Pompeu RCFF, Natale W, Leite LFC (2020) Organomineral fosfate fertilization in Millet in Sandy soil. Bra J Agric Environ Eng 24:694-699. https://doi.org/10.1590/1807-1929/agriambi.v24n10p694-699
  6. Bataglia OC, Furlani AM, Teixeira JPF, Furlani PR, Gallo J R (1983) Métodos de análise química de plantas. Instituto Agronômico Campinas. https://www.researchgate.net/publication/286904632_Metodos_de_analise_quimica_de_plantas Accessed 23 June 2025.
  7. Cabral FL, Bastos AVS, Teixeira MB, Silva EC, Soares FAL, Santos LNS (2020) Níveis de fertilização de fósforo mineral e organomineral na cultura do milho. Braz J Develop 6:36414-36426. https://doi.org/10.34117/bjdv6n6-255
  8. Caixeta EA, Junior Franco KS, Brigante GP, Dias MS, Avilla MAP (2021) Avaliação de diferentes fontes de nitrogênio na cultura do café. Braz J Bio Eng 15:617-631. https://doi.org/10.18011/bioeng2021v15n4p617-631
  9. Chambers JM, Cleveland WS, Kleiner B, Tukey PA (1983) Graphical methods for data analysis. Wadsworth and Brooks/Cole: Belmont, CA, USA. https://doi.org/10.1201/9781351072304
  10. Costa FKD, Menezes JFS, Almeida-Junior JJ, Simon GA, Miranda BC, Lima AM, Lima MS (2018) Desempenho agronômico da soja convencional cultivada com fertilizantes organomineral e mineral. Nucleus 15:301-309. https://doi.org/10.3738/1982.2278.2902
  11. Crusciol CAC, Campos M, Martello JM, Alves CJ, Nascimento CAC, Pereira JCR, Cantarella H (2020) Organomineral fertilizer as source of P and K for sugarcane. Sci Rep 10:5398 https://doi.org/10.1038/s41598-020-62315-1
  12. Embrapa (2017) Manual de Métodos de Análise de Solo. Embrapa, Brasília. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1085209/1/ManualdeMetodosdeAnalisedeSolo2017.pdf. Accessed 23 June 2025.
  13. Embrapa (2018) Sistema Brasileiro de Classificação de Solos. Embrapa, Brasília. https://www.agroapi.cnptia.embrapa.br/portal/assets/docs/SiBCS-2018-ISBN-9788570358004.pdf. Accessed 23 June 2025.
  14. Fernandes ALT, Junior Fraga EF, Correa F, Silva RO (2021) Organic and organic-mineral fertilization of coffee shrubs by drip irrigation. Rev Agro Amb 14:e8621. https://doi.org/10.17765/2176-9168.2021v14Supl.1.e8621
  15. Figueiredo Filho DB, Silva Junior JÁ (2009) Desvendando os mistérios do coeficiente de correlação de Pearson. Polít Hoje 18:1-33. https://doi.org/10.11606/issn.2237-4485.lev.2014.132346
  16. Frazão JJ, Benites VM, Pierobon VM, Ribeiro JVS, Lavres J (2021) A poultry litter-derived organomineral phosphate fertilizer has higher agronomic effectiveness than conventional phosphate fertilizer applied to field-grown maize and soybean. Sustainability 13:11635. https://doi.org/10.3390/su132111635
  17. Garcia JC, Mendes MB (2022) Fontes de fósforo mineral e organomineral no estado nutricional e no crescimento inicial da cana de açúcar. Braz J Anim Envir Res 5:2003-2013. https://doi.org/10.34188/bjaerv5n2-044
  18. Guarçoni A, Souza GS, Paye HS (2019) Representatividade da amostra de solo de acordo com o volume coletado em lavoura de café arábica. Colloq Agrar 15:69-78. https://doi.org/10.5747/ca.2019.v15.n3.a300
  19. Hebebrand C, Glauber J (2024) Global fertilizer trade 2021-2023: What happened after war-related price spikes? IFPRI Blog: Issue Post Communications and Public Affairs. https://www.ifpri.org/blog/global-fertilizer-trade-2021-2023-what-happened-after-war-related-price-spikes/. Accessed 30 may 2025.
  20. Jokura T (2022) Strategies aim to reduce external dependence on fertilizer feedstock. Pesq FAPESP 317, Jul 2022. https://revistapesquisa.fapesp.br/en/strategies-aim-to-reduce-external-dependence-on-fertilizer-feedstock/. Accessed 12 January 2024
  21. Jorhi AK, Oelmüller R, Dua M, Yadav V, Kumar M, Tuteja N, Varma A, Bonfante P, Persson BL, Stroud RM (2015) Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Front Microbiol 6:984. https://doi.org/10.3389/fmicb.2015.00984
  22. Kominko H, Gorazda K, Wzorek Z (2019) Potentiality of sewage sludge-based organo-mineral fertilizer production in Poland considering nutrient value, heavy metal content and phytotoxicity for rapeseed crops. J Envir Manag 248:109283. https://doi.org/10.1016/j.jenvman.2019.109283
  23. Lima LFA (2020) Micorrizas arbusculares e absorção de fósforo em função da capacidade de fixação de fósforo do solo e da composição com a microbiota. Rev Bras Geog Fís 13:106-1079. https://doi.org/10.26848/rbgf.v13.3.p1062-1079
  24. Lopes Junior H, Venturelle BC, Araújo EB, Matos MC, Teixeira WC, Fernandes HHF (2022) Características bromatológicas do café em grão cru comercializado em Jaru-RO. Rev Soci Develop 11:e4411830607. https://doi.org/10.33448/rsd-v11i8.30607
  25. Magela MLM, Camargo R, Lana RMQ, Carvalho MMC (2019) Application of organomineral fertilizers sourced from filter cake and sewage sludge can affect nutrients and heavy metals in soil during early development of maize. Austr J Crop Sci 13:863-873. https://doi.org/10.21475/ajcs.19.13.06.p1538
  26. Mao J, Mao Q, Zheng M, Mo J (2020) Responses of foliar nutrient status and stoichiometry to nitrogen addition in different ecosystems: A meta-analysis. J Geophys Res Biogeosci 125: e2019JG005347. https://doi.org/10.1029/2019JG005347
  27. Mota RP, Camargo R, Lemes E M, Lana RMQ, Almeida RF, Moraes ER (2019) Biosolid and sugarcane filter cake in the composition of organomineral fertilizer on soybean responses. Int J Recycl Org Waste Agric 8:131-137. https://doi.org/10.1007/s40093-018-0237-3
  28. Ojo JA, Olowoake AA, Obembe A (2014) Efficacy of organomineral fertilizer and unamended composto n the growth and yield of watermelon (Citrullus lanatus thumb) in Ilorin Southern Guinea Savanna zone of Nigeria. Int J Recycl Org Waste Agric 3:121-125. https://doi.org/10.1007/s40093-014-0073-z
  29. Pimentel-Gomes F, Garcia CH (2002) Estatística aplicada a experimentos agronômicos e florestais: exposição com exemplos e orientações para uso de aplicativos. FEALQ Editora: Piracicaba, Brazil. https://repositorio.usp.br/item/003040535. Accessed 30 may 2025.
  30. Queiroz AA, Cruvinel VB, Figueiredo KME (2017) Produção de alface americana em função da fertilização com organomineral. Encicl Biosfera 14:1053-1063. https://doi.org/10.18677/EnciBio_2017A84
  31. Ribeiro BN, Coelho AP, Souza JR, Gissi L, Lemos LB (2022) Leaching and availability of potassium in soil affected by conventional and coated fertilizer sources. Braz J Agric Environ Eng 26:924-929. https://doi.org/10.1590/1807-1929/agriambi.v26n12p924-929
  32. Sakurada R, Batista MA, Inoue TT, Muniz AS, Pagliari PH (2016) Organomineral phosphate fertilizers: Agronomic efficiency and residual effect on initial corn development. Agron J 18:2050-2059. https://doi.org/10.2134/agronj2015.0543
  33. Santos HC, Oliveira FHT, Souza AP, Salcedo IH, Silva VDM (2016) Disponibilidade de fósforo em função do seu tempo de contato com diferentes solos. Rev Bras Eng Agríc Ambient 20:1996-1001. https://doi.org/10.1590/1807-1929/agriambi.v20n11p996-1001
  34. Silva RCD, Cardoso AF, Lima LC, Luz JMQ, Lana RMQ, Camargo R (2022) Growth and productivity of Ágata potato cultivar under different doses of organomineral fertilizer. Biosci J 38:e38016. https://doi.org/10.14393/BJ-v38n0a2022-53632
  35. Sitzmann TJ, Celi L, Moretti B, Padoan E, Tagliavini S, Zavattaro L, Grignani C (2025) Suitability of renewable organic materials for the synthesis of organo-mineral fertilizers: Driving factors and replacement of peat. Heliyon 11(4):e42529. https://doi.org/10.1016/j.heliyon.2025.e4252
  36. Soil Survey Staff (2014) Keys to soil taxonomy (12th ed.). Washington, DC: USDA-Natural Resources Conservation Service. https://www.nrcs.usda.gov/sites/default/files/2022-10/keys-to-soil-taxonomy.pdf. Accessed 23 October 2024
  37. Sousa RTX, Silva EG, Medeiros MH, Moraes MD, Delvaux JC, Silva RV, Lana RMQ, Moraes ER (2021) Altura de planta e diâmetro de colmo em cana de açúcar de terceiro corte fertilizada com organomineral de lodo de esgoto e bioestimulante. Braz J Develop 7:36509-36516. https://doi.org/10.34117/bjdv7n4-218
  38. Souza MT, Ferreira SR, Menezes FG, Ribeiro LS, Sousa IM, Peixoto JVM, Silva RV, Moraes ER (2020) Altura de planta e diâmetro de colmo em cana-de-açúcar de segundo corte fertilizada com organomineral de lodo de esgoto e bioestimulante. Braz J Develop 6:1988-1994. https://doi.org/10.34117/bjdv6n1-141
  39. Teixeira WG, Sousa RTX, Korndörfer GH (2014) Resposta da cana de açúcar a doses de fósforo fornecidas por fertilizante organomineral. Biosci J 30:1729-1736. https://seer.ufu.br/index.php/biosciencejournal/article/view/22156. Accessed 23 October 2024
  40. Timsina J (2018) Can organic sources of nutrients increase crop yields to meet global food demand? Agron 8:214. https://doi.org/10.3390/agronomy8100214
  41. Uddin MK Saha BK Wong VNL Patti AF (2025) Organo-mineral fertilizer to sustain soil health and crop yield for reducing environmental impact: A comprehensive review. Eur J Agr 162: 127433. https://doi.org/10.1016/j.eja.2024.127433