10.57647/ijrowa-2025-16969

Vermicompost quality of oyster mushroom Baglogs waste and pineapple residue mix

  1. Research Center for Food Crops, National Research and Innovation Agency Republic of Indonesia Jakarta Pusat, Indonesia
  2. National Research and Innovation Agency Republic of Indonesia Jakarta Pusat, Indonesia
  3. Mataram University Faculty of Agriculture Mataram, Nusa Tenggara Barat, Indonesia
Vermicompost quality of oyster mushroom Baglogs waste and pineapple residue mix

Received: 2023-12-04

Revised: 2025-03-09

Accepted: 2025-06-21

Published in Issue 2025-07-01

How to Cite

Hadiawati, L., Suriadi, A., Syarifinnur, S., Khaerana, K., Nugraha, Y., Arifin, Z., & Susilowati, L. E. (2025). Vermicompost quality of oyster mushroom Baglogs waste and pineapple residue mix. International Journal of Recycling of Organic Waste in Agriculture. https://doi.org/10.57647/ijrowa-2025-16969

PDF views: 66

Abstract

Purpose: The study aimed to examine the quality of vermicompost produced through the combination of oyster mushroom Baglogs and pineapple waste using the Eudrillus eugeniae species as a decomposer.

Method: Vermicompost and compost were derived from a mixture of oyster mushroom Baglogs and pineapple waste. Eudrillus eugeniae earthworms were employed as the decomposers for the vermicomposting process. Vermicompost, compost, and the initial substrate were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Particle Size Analyzer (PSA), chemical composition analysis, and microbiological analysis.

Results: The FT-IR spectra of the vermicompost confirmed an increase in nitrogen-rich compounds and the presence of humic substances. SEM analysis revealed more significant morphological structure changes in vermicompost.  Furthermore, the vermicompost showed the smallest particle size (95.85 µm) compared to compost (149.73 µm) and the initial substrate (653.31 µm). The vermicompost demonstrated a 3-fold reduction in C/N ratio compared to the initial substrate. The nutrient content of the vermicompost increased by 1.2 – 3.2-fold from the initial substrate. The vermicompost exhibited a higher bacterial population (30.93x107 CFU/g) compared to compost (10.05x107 CFU/g) and initial raw material (2.47x107 CFU/g).

Conclusion: The results demonstrated improvement in the qualities of vermicomposting as a sustainable method for waste recycling. The enhanced nutrient content, particle size reduction, and increased bacterial population in the vermicompost indicated its potential as a valuable resource for improving soil health and plant productivity.

Research Highlights

·     Vermicomposting can be used to address waste management and recycling

·     The combination of organic waste in the vermicomposting process can enhance quality

·     FT-IR analysis is used to examine the chemical composition of organic fertilizer

·     The vermicompost surface turns more irregular.

·     Vermicompost has a smaller particle size fraction compared to other treatments.

Keywords

  • Vermicompost composition,
  • Particle Size Analyzer (PSA),
  • Scanning Electron Microscopy (SEM),
  •  Fourier Transform Infrared (FT-IR)

References

  1. Ahmed R, Deka H (2022) Vermicomposting of patchouli bagasse—A byproduct of essential oil industries employing Eisenia fetida. Environ Technol Innov 25:102232. https://doi.org/10.1016/j.eti.2021.102232
  2. Alshehrei F, Al-Enazi NM, Ameen F (2025) Vermicomposting amended with microalgal biomass and biochar produce phytopathogen-resistant seedbeds for vegetables. Biomass Convers. Biorefinery 15: 1795 – 1802. https://doi.org/10.1007/s13399-021-01770-w
  3. Amritha K, Jayasree SS (2020) Production and characterization of vermicompost and biochar from rice straw. J. Pharmacogn. Phytochem. 9: 1556–1562. https://doi.org/10.22271/phyto.2020.v9.i5v.12557
  4. Arancon NQ, Owens JD, Converse C (2019) The effects of vermicompost tea on the growth and yield of lettuce and tomato in a non-circulating hydroponics system. J Plant Nutr 42:2447–2458. https://doi.org/10.1080/01904167.2019.1655049
  5. Arumugam K, Renganathan S, Babalola OO, Muthunarayanan V (2018) Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting. Waste Manag 74:185–193. https://doi.org/10.1016/j.wasman.2017.11.009
  6. Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O (2020) Waste management through composting: Challenges and potentials. Sustain 12:1–23. https://doi.org/10.3390/su12114456
  7. Aynehband A, Gorooei A, Moezzi AA (2017) Vermicompost: An eco-friendly technology for crop residue management in organic agriculture. Energy Procedia 141:667–671. https://doi.org/10.1016/J.EGYPRO.2017.11.090
  8. Bakar A, Gawi SNASM, Mahmood NZ, Abdullah N (2014) Vermicomposting of vegetable waste amended with different sources of agro-industrial by-product using Lumbricus rubellus. Polish J Environ Stud 23:1491–1498.
  9. Balittanah: Indonesian Soil Research Institute (2009) Technical guidelines for soil, plant, water, and fertilizer analysis. Agricultural Research and Development Agency, Ministry of Agriculture. Bogor. p 246. Book ISBN: 978-602-8039-21-5
  10. Bhat SA, Singh J, Vig AP (2017) Instrumental characterization of organic wastes for evaluation of vermicompost maturity. J Analy Sci Technol 8:2. https://doi.org/10.1186/s40543-017-0112-2
  11. Boruah T, Barman A, Kalita P, Lahkar J, Deka H (2019) Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida. Bioresour Technol 294:122147. https://doi.org/10.1016/j.biortech.2019.122147
  12. BPS-Statistics Indonesia (2023) Statistical Yearbook of Indonesia 2023. BPS-Statistical Indonesia
  13. Busato JG, Lima LS, Aguiar NO, Canellas LP, Olivares FL (2012) Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria. Bioresour Technol 110:390–395. https://doi.org/10.1016/j.biortech.2012.01.126
  14. Castillo Diaz JM, Martin-Laurent F, Beguet J, Nogales R, Romero E (2017) Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance. Sci Total Environ 579:1111–1119. https://doi.org/10.1016/j.scitotenv.2016.11.082
  15. Castillo-González E, Giraldi-Díaz MR, De Medina-Salas L, Sánchez-Castillo MP (2019) Pre-composting and vermicomposting of pineapple (Ananas Comosus) and vegetable waste. Appl Sci 9: 3564. https://doi.org/10.3390/app9173564
  16. Cedeño-Díaz JJ, Torres-García CA, García M, Zambrano-Gavilanes F, Maddela NR, Garcés-Fiallos FR (2024) Sustainable maize production by organic amendment – a field study from Ecuadorian Coast. Sarhad J. Agric. 39: 103 – 117. https://doi.org/10.17582/JOURNAL.SJA/2023/39/S2.103.117
  17. Chen T, Zhang S, Yuan Z (2020) Adoption of solid organic waste composting products : A critical review. J Clean Prod 272:122712. https://doi.org/10.1016/j.jclepro.2020.122712
  18. Cristina EF, Inonu I, Khodijah NS (2022) Utilization of liquid organic fertilizer of pineapple peel waste for shallots cultivation (Allium ascalonicum L.). J. Subopt. Lands 11:1–13. https://doi.org/10.36706/jlso.11.1.2022.570
  19. Cruz GSJ, Hermes PH, Miriam SV, López AM (2024) Benefits of vermicompost in agriculture and factors affecting its nutrient content. J. Soil Sci. Plant Nutr. 24: 4898-4917. https://doi.org/10.1007/s42729-024-01880-0
  20. Das D, Bhattacharyya P, Ghosh BC, Banik P (2016) Bioconversion and biodynamics of Eisenia foetida in different organic wastes through microbially enriched vermiconversion technologies. Ecol Eng 86:154–161. https://doi.org/10.1016/j.ecoleng.2015.11.012
  21. Das D, Deka H (2021) Vermicomposting of harvested waste biomass of potato crop employing Eisenia fetida: changes in nutrient profile and assessment of the maturity of the end products. Environ. Sci. Pollut. Res. 28: 35717 – 35727. https://doi.org/10.1007/s11356-021-13214-z
  22. Das D, Tangjang S (2024) Bio-stabilization of toxic weeds (Xanthium strumarium and Lantana camara) implementing mono- and polyculture of Eisenia fetida and Eudrilus eugeniae. Environ. Sci. Pollut. Res. 31: 49891 – 49904. https://doi.org/10.1007/s11356-024-34487-0
  23. Deka H, Deka S, Baruah CK, Das J, Hoque S, Sarma H, Sarma NS (2011) Vermicomposting potentiality of Perionyx excavatus for recycling of waste biomass of java citronella - An aromatic oil yielding plant. Bioresour Technol 102:11212–11217. https://doi.org/10.1016/j.biortech.2011.09.102
  24. Elakiya N, Arulmozhiselvan K (2021) Characterization of substrates of growing media by fourier transform infrared (FT-IR) spectroscopy for containerized crop production. J Appl Nat Sci 13:35–42. https://doi.org/10.31018/jans.v13iSI.2774
  25. Erkul SN, Ucaroglu S (2025) The effect of applying treatment sludge and vermicompost to soil on the biodegradability of poly(lactic acid) and poly(3-Hydroxybutyrate). Polymers (Basel). 17. https://doi.org/10.3390/polym17030352
  26. Fornes F, Mendoza-Hernández D, García-de-la-Fuente R, Abad M, Belda RM (2012) Composting versus vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Bioresour Technol 118:296–305. https://doi.org/10.1016/j.biortech.2012.05.028
  27. George J, Palanisamy K, Kulandaivel S, Saravanan P, Peedika DM, Rajagopalan K, Kaliyannan MK (2023) Impact of cerium oxide nanoparticles on survivability and reproduction of earthworm eudrilus eugeniae and its compost quality. Bionanoscience 13: 1911 – 1921. https://doi.org/10.1007/s12668-023-01173-3
  28. Gnanamani K, Vijayalakhsmi A (2023) Effect of composted sugarcane trash and bagasse on the growth and yield of tomato (Solanum lycopersicum L.). Agric Sci Dig 43:269–273. https://doi.org/10.18805/ag.D-5632
  29. Gupta R, Garg VK (2008) Stabilization of primary sewage sludge during vermicomposting. J Hazard Mater 153:1023–1030. https://doi.org/10.1016/j.jhazmat.2007.09.055
  30. Hanc A, Dreslova M (2016) Effect of composting and vermicomposting on properties of particle size fractions. Bioresour Technol 217:186–189. https://doi.org/10.1016/j.biortech.2016.02.058
  31. Hanc A, Hrebeckova T (2023) Compostability and vermicompostability of greaseproof wrapping paper. Sustain. Chem. Pharm. 32. https://doi.org/10.1016/j.scp.2023.101014
  32. Haynes RJ, Belyaeva ON, Zhou YF (2015) Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting. Waste Manag 35:48–54. https://doi.org/10.1016/j.wasman.2014.10.002
  33. Hema B, Meena S (2020) Investigation on changes in fly ash based vermicompost during vermicomposting utilizing SEM / EDAX and FTIR. J Pharmacogn Phytochem 9:268–273.
  34. Hussain N, Tabassum-Abbasi, Abbasi T, Abbasi, SA (2021) A comparative study of the fertilizer-cum-pesticide effect of vermicomposts derived from cowdung and the toxic weed lantana. Agric. 11. https://doi.org/10.3390/agriculture11121263
  35. Iswahyudi I, Sutanto A, Widodo W, Warkoyo W, Yuniwati ED, Garfansa MP, Ekalaturrahmah YAC, Sugiono S, Ramadani SD, Setyobudi RH (2024) Impact of microplastics on the carbon and nitrogen of vermicompost. Environ. Qual. Manag. 34. https://doi.org/10.1002/tqem.22325
  36. Joshi R, Singh J, Vig AP (2015) Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Rev Environ Sci Biotechnol 14:137–159. https://doi.org/10.1007/s11157-014-9347-1
  37. Kamdi PJ, Swain DK, Wani SP (2024) Improving grain quality and nitrogen use efficiency of cereal-based cropping systems on vertisols in semi-arid tropics. F. Crop. Res. 307. https://doi.org/10.1016/j.fcr.2024.109258
  38. Karmegam N, Vijayan P, Prakash M, John Paul JA (2019) Vermicomposting of paper industry sludge with cow dung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. J Clean Prod 228:718–728. https://doi.org/10.1016/j.jclepro.2019.04.313
  39. Karwal M, Kaushik A (2020) Co-composting and vermicomposting of coal fly-ash with press mud: Changes in nutrients, micro-nutrients and enzyme activities. Environ Technol Innov 18:100708. https://doi.org/10.1016/j.eti.2020.100708
  40. Kumar KG, Husain R, Mishra A, Vikram N, Dwivedi DK, Pandey S, Singh A (2024) Rice crop residue management by the microbial consortium for rapid decomposition of straw. 3 Biotech 14. https://doi.org/10.1007/s13205-024-03982-z
  41. Liu M, Wang C, Liu X, Lu Y, Wang Y (2020) Saline-alkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses. Appl Soil Ecol 156:103705. https://doi.org/10.1016/j.apsoil.2020.103705
  42. Luo M, Zhu L, Huang C, Liang Y, Li L, Lang Z, Wang Z, Gong X (2025) Efficiency and mechanism of three different additives in enhancing vermicomposting of dewatered sludge. Environ. Technol. In Press. https://doi.org/10.1080/09593330.2025.2464982
  43. Lv B, Xing M, Yang J, Qi W, Lu Y (2013) Chemical and spectroscopic characterization of water extractable organic matter during vermicomposting of cattle dung. Bioresour Technol 132:320–326. https://doi.org/10.1016/j.biortech.2013.01.006
  44. Mago M, Yadav A, Gupta R, Garg VK (2021) Management of banana crop waste biomass using vermicomposting technology. Bioresour Technol 326:124742. https://doi.org/10.1016/j.biortech.2021.124742
  45. Mago M, Gupta R, Yadav A, Kumar Garg V (2022) Sustainable treatment and nutrient recovery from leafy waste through vermicomposting. Bioresour Technol 347:126390. https://doi.org/10.1016/j.biortech.2021.126390
  46. Mupambwa HA, Ravindran B, Mnkeni PNS (2016) Potential of effective micro-organisms and Eisenia fetida in enhancing vermi-degradation and nutrient release of fly ash incorporated into cow dung–paper waste mixture. Waste Manag 48:165–173. https://doi.org/10.1016/j.wasman.2015.10.001
  47. Nandiyanto ABD, Oktiani R, Ragadhita R (2019) How to read and interpret FTIR spectroscope of organic material. Indones J Sci Technol 4:97–118. https://doi.org/10.17509/ijost.v4i1.15806
  48. Nurhayati I, Maulidhani ND, Sutrisno J, Kholif MAl (2024) Sustainable pre-treatment of tempeh industry wastewater: Efficiency of vermifiltration in pollutant mitigation and compost production. Desalin. Water Treat. 320. https://doi.org/10.1016/j.dwt.2024.100820
  49. Nyamwaro SO, Tenywa MM, Kalibwani R, Mogabo J, Buruchara R, Fatunbi AO (2018) Innovation opportunities in organic pineapple production in Uganda. FARA Research Reports 2 (17): 18.
  50. Oliveira JM, Silva JC, Siqueira AJN, Nunes RR (2024) Vermicomposted corn waste in the organic cultivation of cherry tomato seedlings and its effects on the soil-plant system. Int. J. Recycl. Org. Waste Agric. 13: 1–10. https://dx.doi.org/10.57647/ijrowa-3h80-t656
  51. Pączka G, Mazur-Paczka A, Garczyńska M, Kostecka J, Butt KR (2021) Garlic (Allium sativum L.) cultivation using vermicompost-amended soil as an aspect of sustainable plant production. Sustain 13:1-11. https://doi.org/10.3390/su132413557
  52. Pathma J, Sakthivel N (2012) Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1:1–19. https://doi.org/10.1186/2193-1801-1-26
  53. Patra RK, Behera D, Mohapatra KK, Sethi D, Mandal M, Patra AK, Ravindran B (2022) Juxtaposing the quality of compost and vermicompost produced from organic wastes amended with cow dung. Environ Res 214:114119. https://doi.org/10.1016/j.envres.2022.114119
  54. Prabowo H, Rahmawati N, Sitepu FET (2020) The effect of oyster mushroom baglog compost on the growth and production some local genotypes of purple sweet potato (Ipomoea batatas L.). IOP Conference Series: Earth and Environmental Science. Accessed 21 May 2025. https://doi.org/10.1088/1755-1315/454/1/012172
  55. Prasetyo MT, Kusnarta IGM, Susilowati LE, Mahrup (2023) The quality of compost made from a mixture of oyster mushroom baglog waste and cow manure with the addition of decomposer of promi, MA-11, and BPF. J Biol Trop 23:464–471. https://doi.org/10.29303/jbt.v23i2.4874
  56. Rajiv P, Rajeshwari S, Venckatesh R (2013) Fourier transform-infrared spectroscopy and Gas chromatography–mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 116:642–645. https://doi.org/10.1016/j.saa.2013.08.012
  57. Rashid MI, Shahzad K (2021) Food waste recycling for compost production and its economic and environmental assessment as circular economy indicators of solid waste management. J Clean Prod 317:128467. https://doi.org/10.1016/j.jclepro.2021.128467
  58. Ravindran B, Mnkeni PNS (2016) Bio-optimization of the carbon-to-nitrogen ratio for efficient vermicomposting of chicken manure and waste paper using Eisenia fetida. Environ Sci Pollut Res 23:16965–16976. https://doi.org/10.1007/s11356-016-6873-0
  59. Ravindran B, Sravani R, Mandal AB, Contreras-Ramos SM, Sekaran G (2013) Instrumental evidence for biodegradation of tannery waste during vermicomposting process using Eudrilus eugeniae. J Therm Anal Calorim 111:1675–1684. https://doi.org/10.1007/s10973-011-2081-9
  60. Raza ST, Rong L, Rene ER, Ali Z, Iqbal H, Sahito ZA, Chen Z (2024) Effects of vermicompost preparation and application on waste recycling, NH3, and N2O emissions: A systematic review on vermicomposting. Environ. Technol. Innov. 35. https://doi.org/10.1016/j.eti.2024.103722
  61. Riyanto, Mulwandari M, Asysyafiiyah L, Sirajuddin MI, Cahyandru N (2022) Direct synthesis of lemongrass (Cymbopogon citratus L .) essential oil - silver nanoparticles ( EO-AgNPs ) as biopesticides and application for lichen inhibition on stones. Heliyon 8:e09701. https://doi.org/10.1016/j.heliyon.2022.e09701
  62. Rout PP, Arulmozhiselvan K (2019) Investigating the suitability of pressmud and coir pith. Cellul Chem Technol 53:599–607.
  63. Rékási M, Mazsu N, Draskovits E, Bernhardt B, Szabó A, Rivier P-A, Farkas C, Borsányi B, Pirkó B, Molnár S, Kátay G, Uzinger N (2019) Comparing the agrochemical properties of compost and vermicomposts produced from municipal sewage sludge digestate. Bioresour Technol 291:121861. https://doi.org/10.1016/J.BIORTECH.2019.121861
  64. Saravanan P, Palanisamy K, Kulandaivelu S (2023) Spectroscopic assessment of sugarcane bagasse mediated vermicompost for qualitative enrichment of animal wastes Elephus maximus and Bos taurus. Waste Biomass Valor. 14, 2133 – 2149. https://doi.org/10.1007/s12649-022-02011-5
  65. Sharma K, Garg VK (2018) Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour Technol 250:708–715. https://doi.org/10.1016/j.biortech.2017.11.101
  66. Sharma K, Garg VK (2019) Vermicomposting of waste: A zero-waste approach for waste management. Sustain Resour Recover Zero Waste Approaches 133–164. https://doi.org/10.1016/B978-0-444-64200-4.00010-4
  67. Singh P, Baisthakur P, Yemul OS (2020) Synthesis, characterization and application of crosslinked alginate as green packaging material. Heliyon 6:e03026. https://doi.org/10.1016/j.heliyon.2019.e03026
  68. Singh RP, Agnihotri RK, Kumar A (2025) Development and physicochemical analysis of compost and vermicompost from floral waste. Res. J. Pharm. Technol. 18, 134 – 138. https://doi.org/10.52711/0974-360X.2025.00020
  69. Soobhany N (2018) Preliminary evaluation of pathogenic bacteria loading on organic municipal solid waste compost and vermicompost. J Environ Manage 206:763–767. https://doi.org/10.1016/j.jenvman.2017.11.029
  70. Soobhany N, Gunasee S, Rago YP, Joyram H, Raghoo P, Mohee R, Garg VK (2017) Spectroscopic, thermogravimetric and structural characterization analyses for comparing municipal solid waste composts and vermicomposts stability and maturity. Bioresour Technol 236:11–19. https://doi.org/10.1016/j.biortech.2017.03.161
  71. Sreevidya M, Gopalakrishnan S, Kudapa H, Varshney RK (2016) Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Brazilian J Microbiol 47:85–95. https://doi.org/.1016/j.bjm.2015.11.030
  72. Srivastava PK, Tiwari GN, Sinha ASK (2024) Enhanced vermicomposting of rice straw and pressmud with biogas slurry employing Eisenia fetida: Production, characterization, growth, and toxicological risk assessment. J. Environ. Manage. 352. https://doi.org/10.1016/j.jenvman.2024.120032
  73. Subhash KM, Rajiv P, Rajeshwari S, Venckatesh R (2015) Spectroscopic analysis of vermicompost for determination of nutritional quality. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135:252–255. https://doi.org/j10.1016/J.SAA.2014.07.011
  74. Suhani I, de Araujo ASF, Kothari R, Vaish B, Singh, RP (2025) Investigating the effect of compost and vermicompost on wheat plants and soil health under natural salt affected field conditions. Int. J. Environ. Res. 19. https://doi.org/10.1007/s41742-024-00710-6
  75. Syarifinnur S, Nuraini Y, Prasetya B, Handayanto E (2020) IOP Conference Series: Materials Science and Engineering. Accessed 21 May 2025. https://doi.org/10.1088/1757-899X/980/1/012068
  76. Syarifinnur S, Nuraini Y, Prasetya B, Handayanto E (2023) Comparing compost and vermicompost produced from market organic waste. Int J Recycl Org Waste Agric 12:279–289. https://doi.org/10.30486/ijrowa.2022.1944251.1368
  77. Syarifinnur S, Nuraini Y, Prasetya B (2022) Effect of application compost and vermicompost from market waste on soil chemical properties and plant growth. J Degrad Min Lands Manag 9:3379–3386. https://doi.org/10.15243/jdmlm.2022.092.3379
  78. Thamizharasan A, Aishwarya M, Gajalakshmi S (2024) Utilizing leaf litter of Azadirachta indica for generation of microbial enriched vermicompost. Bioresour. Technol. Reports 26. https://doi.org/10.1016/j.biteb.2024.101839
  79. Velmurugan K, Annamalai V (2023) First report on toddy palm shell-based vermicompost by Eisenia fetida. Int. J. Environ. Sci. Technol. 20: 11061 – 11074. https://doi.org/10.1007/s13762-022-04597-8
  80. Vieira ITR, Nascimento AL, Sampaio RA, Pegoraro RF (2025) Vermicompost from sewage sludge: effects on heavy metal presence in soil and bioaccumulation in castor bean. Int. J. Environ. Sci. Technol. In Press. https://doi.org/10.1007/s13762-025-06353-0
  81. Voběrková S, Maxianová A, Schlosserová N, Adamcová D, Vršanská M, Richtera L, Gagić M, Zloch J, Vaverková MD (2020) Food waste composting - Is it really so simple as stated in scientific literature? – A case study. Sci Total Environ 723:138202. https://doi.org/10.1016/j.scitotenv.2020.138202
  82. Wan Mahari WA, Peng W, Nam WL, Yang H, Lee XY, Lee YK, Liew RK, Ma NL, Mohammad A, Sonne C, Van Le Q, Show PL, Chen WH, Lam SS (2020) A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. J Hazard Mater 400:123156. https://doi.org/10.1016/j.jhazmat.2020.123156
  83. Wang F, Wang H, Li S, Diao X, Wang F (2019) Effects of earthworms and effective microorganisms on the composting of sewage sludge with cassava dregs in the tropics sewage sludge with cassava dregs in the tropics. J Air Waste Manage Assoc 69:710–716. https://doi.org/10.1080/10962247.2018.1552215
  84. Wonglom P, Ruangwong OU, Poncheewin W, Arikit S, Riangwong K, Sunpapao A (2024) Trichoderma-bioenriched vermicompost induces defense response and promotes plant growth in thai rice variety “Chor Khing”. J. Fungi (Basel, Switzerland) 10. https://doi.org/10.3390/jof10080582
  85. Wu TY, Lim SL, Lim PN, Shak KPY (2014) Biotransformation of biodegradable solid wastes into organic fertilizers using composting or/and vermicomposting. Chem Eng Trans 39:1579–1584. https://doi.org/10.3303/CET1439264
  86. Yadav A, Garg VK (2011) Recycling of organic wastes by employing Eisenia fetida. Bioresour Technol 102:2874–2880. https://doi.org/10.1016/j.biortech.2010.10.083
  87. Yadav A, Garg VK (2019) Biotransformation of bakery industry sludge into valuable product using vermicomposting. Bioresour Technol 274:512–517. https://doi.org/10.1016/j.biortech.2018.12.023
  88. Zhang J, Lv B, Xing M, Yang J (2015) Tracking the composition and transformation of humic and fulvic acids during vermicomposting of sewage sludge by elemental analysis and fluorescenceexcitation–emission matrix. Waste Manag 39:111–118. https://doi.org/10.1016/j.wasman.2015.02.010
  89. Zhao F, Zhang Y, Dong W, Zhang Y, Zhang G, Sun Z, Yang L (2019) Vermicompost can suppress Fusarium oxysporum f. sp. lycopersici via generation of beneficial bacteria in a long-term tomato monoculture soil. Plant Soil 440:491–505. https://doi.org/10.1007/s11104-019-04104-y
  90. Zziwa A, Jjagwe J, Kizito S, Kabenge I, Komakech AJ, Kayondo H (2021) Nutrient recovery from pineapple waste through controlled batch and continuous vermicomposting systems. J Environ Manage 279:111784. https://doi.org/10.1016/j.jenvman.2020.111784