skip to main content
Menu
Original Article

Energy Scheduling in a Hybrid DC/AC Micro-Grid Considering Battery/Wind/Photovoltaic Power Sources using Heuristic Optimization Algorithm

Authors

Abstract

This paper is treated with optimum energy management in a DC/AC Microgrid (MG) containing hybrid power sources to supply the load within cost minimization. In this hybrid electrical networks, energy sources are exploited as DC and AC manner, in which the Independent System Operator (ISO) should provide a practical coordination between them in order to procure the demand load optimally. This paper presents a framework that all available resources are formulated mathematically in hybrid microgrid with full constraints along with Demand Response (DR) programs implementation. The network under consideration can operate both in grid-tied and autonomous modes to manage power exchanging. Uncertainty and intermittent of Photovoltaic (PV) with Maximum Power Point Tracker (MPPT) equipped, Wind Turbine (WT), Energy Storage Systems (ESS) and DR programs are also considered to achieve the optimal control and operation. The ESSs are capable to connect both DC and AC links and the State of Charge (SOC) is maintained within permissible range. The proposed DG control framework and operation scheduling has facilitated the energy management of renewables using dynamic programing approach. A 24-hour time horizon simulation and discussion through three scenarios verified on a IEEE 33 bus distribution network, is done to represent the effectiveness of proposed energy management strategy to keep the whole hybrid grid stable.

Keywords