10.57647/pibm-2025-17530

Shogaol from Zingiber officinale: Antimicrobial, Anti-Virulence, and Therapeutic Potential against Foodborne Pathogens and Beyond

  1. Clinical Laboratory Science Department, Applied Medical Science College, University of Ha’il, Hail 2440, Saudi Arabia
  2. Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
  3. Clinical Nutrition Department, Applied Medical Science College, University of Ha’il, Hail 2440, Saudi Arabia
  4. Biochemistry Department, College of Medicine, University of Ha’il, Hail 2440, Saudi Arabia
  5. Clinical and Chemical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
  6. First Year of Health and Medical Colleges, Basic Sciences Department, University of Ha’il, Hail 2440, Saudi Arabia
Shogaol from Zingiber officinale: Antimicrobial, Anti-Virulence, and Therapeutic Potential against Foodborne Pathogens and Beyond

How to Cite

Fareid, M. A., El-Sherbiny, G. M., Elafandy, N. M., Eltoum, N. E., Othman, M. S., Sharaf, M. H., Shehabeldine, A. M., Farghal, E. E., & Hamada, F. A. (2025). Shogaol from Zingiber officinale: Antimicrobial, Anti-Virulence, and Therapeutic Potential against Foodborne Pathogens and Beyond. Progress in Biomaterials. https://doi.org/10.57647/pibm-2025-17530

Abstract

Foodborne pathogens pose a considerable global challenge, acting as reservoirs of pathogens and contributing to the development of antimicrobial resistance. Herein, this study aims to extract shogaol from Zingiber officinale and use it in fighting foodborne pathogens and their virulence factors, as well as potential medicinal benefits. The extracted shogaol has demonstrated significant antimicrobial action against foodborne bacterial species, with MIC ranging from 62.5 to 250μg/mL and a reduction in biofilm formation of 66.33±0.68%, as well as a significant decrease in the fnbA, icaA, and can genes expression levels. Furthermore, shogaol showed antioxidant activity through DPPH and ABTS assays with IC50 values of 174.32 and 185.89μg/mL, and anti-hemolytic activity of 60.2±0.261% to 78.5±0.31% at concentrations 4 and 50 µg/mL, respectively. Furthermore, shogaol revealed remarkable inhibitory action on α-glucosidase with (72.0%) and α-amylase (75.0%) and anticancer activity against two cancer cell lines, MCF7 ATCC-HPT-22 and HCT116 ATCC-CCL-247, with IC50 values of 98.41±0.9 and 95.48±0.6 μg/mL, respectively. GC–MS analysis demonstrated that the major active compound in Zingiber officinale extract is shogaol. Our findings highlight shogaol as a promising alternative approach to combat foodborne bacterial pathogens and their virulence factor.

Keywords

  • Shogaol,
  • Zingiber officinale,
  • Foodborne pathogens,
  • Antimicrobial activity,
  • Antivirulence,
  • Antioxidant,
  • Anticancer

References

  1. El-Sherbiny, G. M., & Elbestawy, M. K. M. (2022). A review – plant essential oils active against Helicobacter pylori. Journal of Essential Oil Research, 34(3), 203–215. https://doi.org/10.1080/10412905.2022.2025464
  2. Ribeiro-Santos, R.; Andrade, M.; Melo, N. R.; Sanches-Silva, A. Use of Essential Oils in Active Food Packaging: Recent Advances and Future Trends. Trends Food Sci. Tech. 2017, 61, 132–140. DOI: 10.1016/j.tifs.2016.11.021.
  3. El-Sherbiny GM, Gazelly AM, Sharaf MH, Moghannemm SA, Shehata M, Ismail MKA. El-Hawary Exploitation of the antibacterial, antibiofilm and antioxidant activities of Salvadora persica (Miswak) extract. Bioresources and Bioproducts. 2022. https://doi.org/10.1016/j.jobab.2022.11.006A.S Journal of
  4. Ochoa-Velasco, C. E.; Ávila-Sosa, R.; Navarro-Cruz, A. R.; López-Malo, A.; Palou, E. Biotic and Abiotic Factors to Increase the Bioactive Compounds in Fruits and Vegetables. Chapter In Food Bioconversion; Grumezescu, A.M., Holban, A. M., Eds.; Academic Press: London, 2017; pp 317–348.
  5. Clemente, I.; Aznar, M.; Silva, F.; Nerín, C. Antimicrobial Properties and Mode of Action of Mustard and Cinnamon Essential Oils and Their Combination against Foodborne Bacteria. Innov. Food Sci. Emerg. Technol. 2016, 36, 26–33. DOI: 10.1016/j.ifset.2016.05.013.
  6. Sharma, A.; Flores-Vallejo, R. C.; Cardoso-Taketa, A.; Villareal, M. L. Antibacterial Activities of Medicinal Plants Used in Mexican Traditional Medicine. J. Ethnopharmacol. 2017, 208, 264–329. DOI: 10.1016/j.jep.2016.04.045.
  7. Semwal, R. B.; Semwal, D. K.; Combrinck, S.; Viljoen, A. M. Gingerols and Shogaols: Important Nutraceutical Principles from Ginger. Phytochemistry. 2015, 117, 554–568.
  8. Thongson, C.; Davidson, P. M.; Mahakarnchanakul, W.; Vibulsresth, P. Antimicrobial Effect of Thai Spices against Listeria Monocytogenes and Salmonella Typhimurium DT104. J. Food Prot. 2005, 3, 2054–2058.
  9. Kaushik, P.; Goyal, P. Evaluation of Various Crude Extracts of Zingiber Officinale Rhizome for Potential Antibacterial Activity: A Study in Vitro. Adv. Appl. Microbiol. 2011, 1, 7–12.
  10. Singh, G.; Maurya, S.; Catalan, C.; De Lampasona, M. P. Studies on Essential Oils, Part 42: Chemical, Antifungal, Antioxidant and Sprout Suppressant Studies on Ginger Essential Oil and Its Oleoresin. Flavour Fragr. J. 2005, 20, 1–6. DOI: 10.1002/ffj.1373.
  11. Figueroa-González, G., Quintas-Granados, L. I., Reyes-Hernández, O. D., Caballero-Florán, I. H., Peña-Corona, S. I., Cortés, H., Leyva-Gómez, G., Habtemariam, S., & Sharifi-Rad, J. (2024). Review of the anticancer properties of 6-shogaol: Mechanisms of action in cancer cells and future research opportunities. Food Science & Nutrition, 12, 4513–4533. https://doi.org/10.1002/fsn3.4129
  12. Hitomi, S.; Ono, K.; Terawaki, K.; Matsumoto, C.; Mizuno, K.; Yamaguchi, K.; Imai, R.; Omiya, Y.; Hattoti, T.; Kase, Y.; et al. [6]-Gingerol and [6]-Shogaol, Active Ingredients of the Traditional Japanese Medicine Hangeshashinto, Relief Oral Ulcerative Mucositis-Induced Pain via Action on Na+ Channels. Pharm. Res. 2017, 117, 288–302. DOI: 10.1016/j. phrs.2016.12.026.
  13. Soltani, E.; Jangjoo, A.; Aghaei, A. M.; Dalili, A. Effects of Preoperative Administration of Ginger (Zingiber Officinale Roscoe) of Postoperative Nausea and Vomiting after Laparoscopic Cholecystectomy. J. Tradit. Complement. Med. 2017, 1–4. DOI: 10.1016/j. jtcme.2017.06.008.
  14. Chang, J. S.; Wang, K. C.; Yeh, C. F.; Shieh, D. E.; Chiang, L. C. Fresh Ginger (Zingiber Officinale) Has Anti-Viral Activity against Human Respiratory Syncytial Virus in Human Respiratory Tract Cell Lines. J. Ethnopharmacol. 2013, 145, 145–151.
  15. Daily, J. W.; Yang, M.; Kim, D. S.; Park, S. Efficacy of Ginger for Treating Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Ethn Foods. 2015, 2, 336–343
  16. Elbestawy MKM, El-Sherbiny GM, Moghannem SA, Farghal EE. Antibacterial, Antibiofilm, and Anti-Inflammatory Activities of Ginger Extract against Helicobacter pylori. Microbiology Research. 2023; 14(3):1124-1138. https://doi.org/10.3390/microbiolres14030075
  17. Duarte, M. C.; Tavares, G. S. V.; Valadares, D. G.; Lage, D. P.; Ribeiro, T. G.; Lage, L. M. R.; Rodrigues, M. R.; Faraco, A. A. G.; Soto, M.; Da Silva, E. S. et al. Antileishmanial Activity and Mechanism of Action from a Purified Fraction of Zingiber Officinalis Roscoe against Leishmania Amazonensis. Exp. Parasitol. 2016, 166, 21–28.
  18. Zhang, F.; Zhang, J. G.; Qu, J.; Zhang, Q.; Prasad, Q.; Wei, Z. J. Assessment of Anti-Cancerous Potential of 6-Gingerol (Tongling White Ginger) and Its Synergy with Drugs on Human Cervical Adenocarcinoma Cells. Food Chem. Toxicol. 2017, 109, 910–922.
  19. Beristain-Bauza, S. D. C., Hernández-Carranza, P., Cid-Pérez, T. S., Ávila-Sosa, R., Ruiz-López, I. I., & Ochoa-Velasco, C. E. (2019). Antimicrobial Activity of Ginger (Zingiber Officinale) and Its Application in Food Products. Food Reviews International, 35(5), 407–426. https://doi.org/10.1080/87559129.2019.1573829
  20. Jia Y, Li X, Meng X, Lei J, Xia Y, Yu L. Anticancer perspective of 6-shogaol: anticancer properties, mechanism of action, synergism and delivery system. Chin Med. 2023 Oct 24;18(1):138. doi: 10.1186/s13020-023-00839-0. PMID: 37875983; PMCID: PMC10594701.
  21. Yeh I-J, Chen S-C, Yen M-C, Wu Y-H, Hung C-H, Kuo P-L. 6-Shogaol suppresses 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP)-induced human 786-O renal cell carcinoma osteoclastogenic activity and metastatic potential. Nutrients. 2019;11:2306.
  22. Pei XD, He ZL, Yao HL, Xiao JS, Li L, Gu JZ, et al. 6-Shogaol from ginger shows anti-tumor effect in cervical carcinoma via PI3K/Akt/mTOR pathway. Eur J Nutr. 2021;60:2781–93.
  23. Koshak AE, Okairy HM, Elfaky MA, Abdallah HM, Mohamed GA, Ibrahim SRM, Alzain AA, Abulfaraj M, Hegazy WAH, Nazeih SI. Antimicrobial and anti-virulence activities of 4-shogaol from grains of paradise against gram-negative bacteria: Integration of experimental and computational methods. J Ethnopharmacol. 2024 Apr 6;323:117611. doi: 10.1016/j.jep.2023.117611. Epub 2023 Dec 27. PMID: 38158095
  24. Ok S, Jeong WS. Optimization of Extraction Conditions for the 6-Shogaol-rich Extract from Ginger (Zingiber officinale Roscoe). Prev Nutr Food Sci. 2012 Jun;17(2):166-71. doi: 10.3746/pnf.2012.17.2.166. PMID: 24471079; PMCID: PMC3866747.
  25. Bhattarai S, Tran VH, Duke CC. The stability of gingerol and shogaol in aqueous solutions. J Pharm Sci. 2001;90:1658–1664. doi: 10.1002/jps.1116.
  26. Foda AM; Kalaba MH.; El-Sherbiny, G. M.; Saad, A. M. and El-Fakharany E. M. (2022). Antibacterial activity of essential oils for combating colistin-resistant bacteria, Expert Review of Anti-infective Therapy, DOI: 10.1080/14787210.2022.210199
  27. Sharaf MH, El-Sherbiny GM, Moghannem SA, et al. (2021) New combination approaches to combat methicillin-resistant Staphylococcus aureus (MRSA). Sci Rep.;11(1):1–16
  28. CLSI. (2021). Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. 6 (1). Wayne, PA: Clinical and Laboratory Standards Institute
  29. El-Sherbiny, G.M., Alluqmani, A.J., Elsehemy, I.A. et al. Antibacterial, antioxidant, cytotoxicity, and phytochemical screening of Moringa oleifera leaves. Sci Rep 14, 30485 (2024). https://doi.org/10.1038/s41598-024-80700-y
  30. Fareid, M.A., et al., Impeding Biofilm-Forming Mediated Methicillin-Resistant Staphylococcus aureus and Virulence Genes Using a Biosynthesized Silver Nanoparticles–Antibiotic Combination. Biomolecules, 2025. 15(2): p. 266
  31. Mastoor, S, Nazim, F, Rizwan-Ul-Hasan, S; et al. Analysis of the Antimicrobial and Anti-Biofilm Activity of Natural Compounds and Their Analogues against Staphylococcus aureus Isolates. Molecules. 2022;27(20):6874. doi:10.3390/molecules27206874.
  32. El-Sherbiny GM, Farghal EE, Lila MK, Shetaia YM, Mohamed SS, Elswify MMF. Antibiotic susceptibility and virulence factors of bacterial species among cancer patients. Biotechnol Notes, 2024, 27–32.
  33. Shehata M. E., El-Sherbiny, G.M., Sharaf, M.H. et al. Phytochemical analysis, antimicrobial, antioxidant, and cytotoxicity activities of Schinus molle (L.) extracts. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05301-1
  34. Elbestawy, M.K.M.; El-Sherbiny, G.M.; Moghannem, S.A. Antibacterial, Antibiofilm and Anti-Inflammatory Activities of Eugenol Clove Essential Oil against Resistant Helicobacter pylori. Molecules 2023, 28, 2448.
  35. Saravanan S., Parimelazhagan T. In vitro antioxidants, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food Science and Human Wellness 3 (2014) 56–64
  36. Apostolidis E., Lee C, in vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated α-glucosidase and α-amylase inhibition, J. Food Sci.75 (2010) H97–H102.
  37. El-Sherbiny GM, Kalaba MH, Foda AM, M E S, Youssef ASE, A Elsehemy I, Farghal EE, El-Fakharany EM. Nanoemulsion of cinnamon oil to combat colistin-resistant Klebsiella pneumoniae and cancer cells. Microb Pathog. 2024 Jul;192:106705. doi: 10.1016/j.micpath.2024.106705. Epub 2024 May 17. PMID: 38761892.
  38. AlghazzalyAM, El-Sherbiny GM, Moghannemm SA, Sharaf MH, Abd ElAziz AA Antibacterial, Antibiofilm, Antioxidants and Phytochemical Profiling of Syzygium aromaticum Extract. Egyptian Journal of Aquatic Biology & Fisheries. 26(5): 207- 218 (2022).
  39. Ersedo TL.,Teka TA., Forsido SF, Dessalegn F, Adebo JA., Tamiru M., Astatkie T. (2023) Food flavor enhancement, preservation, and bio-functionality of ginger (Zingiber officinale): a review. International Journal of Food Properties, 26:1, 928-951,
  40. Edo, G.I., Ugbune, U., Akpoghelie, P.O. et al. Evaluation of physicochemical, phytochemical, anti-bacterial and antioxidant potential of kola nut (cola acuminata): an approach in food, health and nutritional benefits. Vegetos 37, 2320–2329 (2024). https://doi.org/10.1007/s42535-023-00715-0
  41. Shareef HK, Muhammed HJ, Hussein HM, Hameed IH. Antibacterial Effect of Ginger (Zingiber officinale) Roscoe and Bioactive Chemical Analysis using Gas Chromatography Mass Spectrum. Oriental Journal of Chemistry. 32 (2): 817-837, 2016.
  42. Liu, Q.; Meng, X.; Li, Y.; Zhao, C. -N.; Tang, G. -Y.; Li, H. -B. Antibacterial and Antifungal Activities of Spices. Int. J. Mol. Sci. 2017, 18¬6), 1283. DOI: 10.3390/ijms18061283.
  43. Mukkavilli, R.; Yang, C.; Singh Tanwar, R.; Ghareeb, A.; Luthra, L.; Aneja, R. Absorption, Metabolic Stability, and Pharmacokinetics of Ginger Phytochemicals. Molecules. 2017, 22¬4), 553. DOI: 10.3390/molecules22040553.
  44. Sellami, M.; Ghariani, B.; Louati, H.; Miled, N.; Gargouri, Y. Biological Activities of Extracts of Different Spices and Plants. Int. J. Curr. Eng. Technol. 2013, 3¬3), 1051–1060.
  45. Hasan, H. A.; Rashhed Raauf, A. M.; Abd Razik, B. M.; Rasool Hassan, B. A. Chemical Composition and Antimicrobial Activity of the Crude Extracts Isolated from Zingiber Officinale by Different Solvents. Pharmaceut. Ana. Acta. 2012, 3, 1–5. DOI: 10.4172/2153-
  46. Singh, G.; Fapoor, I. P. S.; Shigh, P.; Heluani, C. S.; Lampasona, M. P.; Catalan, C. A. N. Chemistry, Antioxidant and Antimicrobial Investigations on Essential Oil and Oleoresins of Zingiber Officinale. Food Chem. Toxicol. 2008, 46, 3295–3302. DOI: 10.1016/j. fct.2008.07.017.2435.1000184.
  47. Koshak AE, Okairy HM, Elfaky MA, Abdallah HM, Mohamed GA, Ibrahim SRM, Alzain AA, Abulfaraj M, Hegazy WAH, Nazeih SI. Antimicrobial and anti-virulence activities of 4-shogaol from grains of paradise against gram-negative bacteria: Integration of experimental and computational methods. J Ethnopharmacol. 2024 Apr 6;323:117611. doi: 10.1016/j.jep.2023.117611. Epub 2023 Dec 27. PMID: 38158095.
  48. Shawky, M., Kalaba, M.H. & El-Sherbiny, G.M. Combined impact of biosynthesized selenium nanoparticles and imipenem against carbapenem-resistant Pseudomonas aeruginosa and their associated virulence factors. BMC Microbiol 25, 235 (2025).
  49. Yusuf, A.A., Lawal, B., Abubakar, A.N. et al. In-vitro antioxidants, antimicrobial and toxicological evaluation of Nigerian Zingiber officinale. Clin Phytosci 4, 12 (2018). https://doi.org/10.1186/s40816-018-0070-2
  50. Chakraborty B, Nath A, Saikia H, Sengupta M. Bactericidal activity of selected medicinal plants against multidrug resistant bacterial strains from clinical isolates. Asian Pac J Trop Med. 2014 Sep;7S1:S435-41. doi: 10.1016/S1995-7645(14)60271-6. PMID: 25312164
  51. Aghazadeh M, Zahedi Bialvaei A, Aghazadeh M, Kabiri F, Saliani N, Yousefi M, Eslami H, Samadi Kafil H. Survey of the Antibiofilm and Antimicrobial Effects of Zingiber officinale (in Vitro Study). Jundishapur J Microbiol. 2016 Feb 7;9(2):e30167. doi: 10.5812/jjm.30167. PMID: 27127591; PMCID: PMC4842230.
  52. Chakotiya, A.S.; Tanwar, A.; Narula, A.; Sharma, R.K. Zingiber officinale: Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry. Microb. Pathogenesis. 2017, 107, 254–260.
  53. Kim, H.; Park, H. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS ONE 2013, 8, e76106.
  54. Hasan, S.; Danishuddin, M.; Khan, A.U. Inhibitory effect of Zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies. BMC Microbiol. 2015, 15, 1
  55. Rampogu, S.; Baek, A.; Gajula, R.G.; Zeb, A.; Bavi, R.S.; Kumar, R.; Kim, Y.; Kwon, Y.J.; Lee, K.W. Ginger (Zingiber officinale) phytochemicals-gingerenone-A and shogaol inhibit SaHPPK: molecular docking, molecular dynamics simulations and in vitro approaches. Ann. Clin. Microb. Anti. 2018, 17, 16
  56. Lee JH, Kim YG, Choi P, Ham J, Park JG, Lee J. Antibiofilm and Antivirulence Activities of 6-Gingerol and 6-Shogaol Against Candida albicans Due to Hyphal Inhibition. Front Cell Infect Microbiol. 2018 Aug 28;8:299. doi: 10.3389/fcimb.2018.00299. PMID: 30211127; PMCID: PMC6121036
  57. Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods. 2019 30;8(6):185. doi: 10.3390/foods8060185. PMID: 31151279; PMCID: PMC6616534.
  58. Abolaji, A.O.; Ojo, M.; Afolabi, T.T.; Arowoogun, M.D.; Nwawolor, D.; Farombi, E.O. Protective properties of 6-gingerol-rich fraction from Zingiber officinale (ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Chem. Biol. Interact. 2017, 270, 15–23.
  59. Li, Y.; Hong, Y.; Han, Y.; Wang, Y.; Xia, L. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger. J. Chromatogr. B 2016, 1011, 223–232
  60. Sakulnarmrat, K.; Srzednicki, G.; Konczak, I. Antioxidant, enzyme inhibitory and antiproliferative activity of polyphenolic-rich fraction of commercial dry ginger powder. Int. J. Food Sci. Tech. 2015, 50, 2229–2235.
  61. Gunathilake, K.D.P.P.; Rupasinghe, H.P.V. Inhibition of human low-density lipoprotein oxidation in vitro by ginger extracts. J. Med. Food 2014, 17, 424–431.
  62. Upadhyaya, S.; Yadav, D.; Chandra, R.; Arora, N. Evaluation of Antibacterial and Phytochemical Properties of Different Spice Extracts. Afr. J. Microbiol. Res. 2018, 12¬2), 27–37. DOI: 10.5897/AJMR2017.8731.
  63. Si, W.; Chen, Y. P.; Zhang, J.; Chen, Z. Y.; Chung, H. Y. Antioxidant Activities of Ginger Extract and Its Constituents Toward Lipids. Food Chem. 2018, 239, 1117–1125. DOI: 10.1016/j.foodchem.2017.07.055.
  64. Zhang, M.; Viennois, E.; Prasad, M.; Zhang, Y.; Wang, L.; Zhang, Z.; Han, M.K.; Xiao, B.; Xu, C.; Srinivasan, S.; et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016, 101, 321–340.
  65. Zhang, G.; Nitteranon, V.; Chan, L.Y.; Parkin, K.L. Glutathione conjugation attenuates biological activities of 6-dehydroshogaol from ginger. Food Chem. 2013, 140, 1–8.
  66. Luettig, J.; Rosenthal, R.; Lee, I.M.; Krug, S.M.; Schulzke, J.D. The ginger component 6-shogaol prevents TNF-alpha-induced barrier loss via inhibition of PI3K/Akt and NF-kappa B signaling. Mol. Nutr. Food Res. 2016, 60, 2576–2586.
  67. Hsiang, C.; Lo, H.; Huang, H.; Li, C.; Wu, S.; Ho, T. Ginger extract and zingerone ameliorated trinitrobenzene sulphonic acid-induced colitis in mice via modulation of nuclear factor-kappa B activity and interleukin-1 beta signalling pathway. Food Chem. 2013, 136, 170–177.
  68. Ueno, N.; Hasebe, T.; Kaneko, A.; Yamamoto, M.; Fujiya, M.; Kohgo, Y.; Kono, T.; Wang, C.; Yuan, C.; Bissonnette,M.; et al. TU-100 (Daikenchuto) and ginger ameliorate anti-CD3 antibody induced T cell-mediated murine enteritis: microbe-independent effects involving Akt and Nf-kappa b suppression. PLoS ONE 2014, 9, e97456.
  69. Zhu, Y.; Zhao, Y.; Wang, P.; Ahmedna, M.; Sang, S. Bioactive ginger constituents alleviate protein glycation by trapping methylglyoxal. Chem. Res. Toxicol. 2015, 28, 1842–1849
  70. Sampath, C.; Rashid, M.R.; Sang, S.; Ahmedna, M. Specific bioactive compounds in ginger and apple alleviate hyperglycemia in mice with high fat diet-induced obesity via Nrf2 mediated pathway. Food Chem. 2017, 226, 79–88. [
  71. Bin Samad, M.; Bin Mohsin, M.N.A.; Razu, B.A.; Hossain, M.T.; Mahzabeen, S.; Unnoor, N.; Muna, I.A.; Akhter, F.; Ul Kabir, A.; Hannan, J.M.A. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic beta-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Lepr(db/db) type 2 diabetic mice. BMC Complem. Altern. M. 2017, 17, 395.
  72. Arablou, T.; Aryaeian, N.; Valizadeh, M.; Sharifi, F.; Hosseini, A.; Djalali, M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int. J. Food Sci. Nutr. 2014, 65, 515–520
  73. Li, Y.; Tran, V.H.; Kota, B.P.; Nammi, S.; Duke, C.C.; Roufogalis, B.D. Preventative effect of Zingiber officinale on insulin resistance in a high-fat high-carbohydrate diet-fed rat model and its mechanism of action. Basic Clin. Pharmacol. 2014, 115, 209–215.
  74. Dongare, S.; Gupta, S.K.; Mathur, R.; Saxena, R.; Mathur, S.; Agarwal, R.; Nag, T.C.; Srivastava, S.; Kumar, P. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms. Mol. Vis. 2016, 22, 599–609.
  75. Mahluji, S.; Attari, V.E.; Mobasseri, M.; Payahoo, L.; Ostadrahimi, A.; Golzari, S.E.J. Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. Int. J. Food Sci. Nutr. 2013, 64, 682–686.
  76. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024 May-Jun;74(3):229-263. doi: 10.3322/caac.21834. Epub 2024 Apr 4. PMID: 38572751.
  77. Figueroa-González G, Quintas-Granados LI, Reyes-Hernández OD, Caballero-Florán IH, Peña-Corona SI, Cortés H, Leyva-Gómez G, Habtemariam S, Sharifi-Rad J. Review of the anticancer properties of 6-shogaol: Mechanisms of action in cancer cells and future research opportunities. Food Sci Nutr. 2024 Mar 27;12(7):4513-4533. doi: 10.1002/fsn3.4129. PMID: 39055196; PMCID: PMC11266911.
  78. Sakulnarmrat, K.; Srzednicki, G.; Konczak, I. Antioxidant, enzyme inhibitory and antiproliferative activity of polyphenolic-rich fraction of commercial dry ginger powder. Int. J. Food Sci. Tech. 2015, 50, 2229–2235.
  79. Tahir, A.A.; Sani, N.F.A.; Murad, N.A.; Makpol, S.; Ngah, W.Z.W.; Yusof, Y.A.M. Combined ginger extract & Gelam honey modulate Ras/ERK and PI3K/AKT pathway genes in colon cancer HT29 cells. Nutr. J. 2015, 14, 31.
  80. Deol, P.K.; Kaur, I.P. Improving the therapeutic efficiency of ginger extract for treatment of colon cancer using a suitably designed multiparticulate system. J. Drug Target 2013, 21, 855–865
  81. Zhang, F.; Zhang, J.; Qu, J.; Zhang, Q.; Prasad, C.; Wei, Z. Assessment of anti-cancerous potential of 6-gingerol (Tongling white ginger) and its synergy with drugs on human cervical adenocarcinoma cells. Food Chem. Toxicol. 2017, 109, 910–922.
  82. Tao Y, Li W, Liang W, Van Breemen RB. Identification and quantification of gingerols and related compounds in ginger dietary supplements using high-performance liquid chromatography-tandem mass spectrometry. J Agric Food Chem. 2009 Nov 11;57(21):10014-21. doi: 10.1021/jf9020224. PMID: 19817455; PMCID: PMC2783668.
  83. Semwal, R. B.; Semwal, D. K.; Combrinck, S.; Viljoen, A. M. Gingerols and Shogaols: Important Nutraceutical Principles from Ginger. Phytochemistry. 2015, 117, 554–568. DOI: 10.1016/j.phytochem.2015.07.012
  84. Choi, J. G.; Kim, S. Y.; Jeong, M.; Oh, M. S. Pharmacotherapeutic Potential of Ginger and Its Compounds in Age-Related Neurological Disorders. Pharmacol. Ther. 2018, 182, 56–69. DOI: 10.1016/j.pharmthera.2017.08.010.
  85. Chen, C. C.; Kuo, M. C.; Wu, C. M.; Ho, C. T. Pungent Compounds of Ginger (Zingiber Officinale Roscoe) Extracted by Liquid Carbon Dioxide. J. Agric. Food Chem. 1986, 34, 477–480. DOI: 10.1021/jf00069a027.
  86. Schadich, E.; Hlavac, J.; Volna, T.; Varanasi, L.; Hajduch, M.; Dzubak, P. Effects of ginger phenylpropanoids and quercetin on Nrf2-ARE pathway in human BJ fibroblasts and HaCaT keratinocytes. Biomed Res. Int. 2016, 2016, 2173275