10.57647/pibm-2025-17505

Angiogenesis and in vitro bone differentiation of HMSCs on PCL nanofiber scaffolds containing homogenized platelet-rich fibrin-chitosan nanoparticles: an in ovo CAM model

  1. Department of Biomedical Engineering, Ya. C., Islamic Azad University, Yazd, Iran
  2. Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran
Angiogenesis and in vitro bone differentiation of HMSCs on PCL nanofiber scaffolds containing homogenized platelet-rich fibrin-chitosan nanoparticles: an in ovo CAM model

Published in Issue 2025-09-19

How to Cite

Alizadeh, M., & Mahmoodi, M. (2025). Angiogenesis and in vitro bone differentiation of HMSCs on PCL nanofiber scaffolds containing homogenized platelet-rich fibrin-chitosan nanoparticles: an in ovo CAM model . Progress in Biomaterials. https://doi.org/10.57647/pibm-2025-17505

Abstract

Bone regeneration remains a major clinical challenge, as current scaffolds rarely replicate the optimal microenvironment required for effective tissue repair, particularly in stimulating vascularization. This study aimed to develop and evaluate a polycaprolactone (PCL) nanofiber scaffold incorporating chitosan (CH) nanoparticles loaded with homogenized platelet-rich fibrin (PCL/CH-hPRF) for bone tissue engineering. Scaffolds were fabricated via electrospinning and characterized by dynamic contact angle measurements, mechanical testing, degradation test, and in vitro bioactivity. Also, biological performance was evaluated by protein adsorption, MG‑63 cell biocompatibility, and osteogenic differentiation of human mesenchymal stem cells (HMSCs) through alkaline phosphatase activity, calcium deposition, and Alizarin red staining. Furthermore, angiogenic potential was investigated using the in ovo chorioallantoic membrane (CAM) assay. Incorporating CH-hPRF nanoparticles into PCL nanofibers reduced the average fiber diameter from 230 nm in PCL scaffolds to 189 nm in PCL/CH-hPRF scaffolds. The PCL/CH‑hPRF scaffold showed an increased degradation rate relative to other scaffolds, which can be attributed to enhanced fluid infiltration driven by its increased porosity and lower contact angle. The PCL/CH-hPRF scaffolds exhibited a significantly higher elastic modulus (45.35 MPa) compared to PCL scaffolds (35.53 MPa). Moreover,the hPRF release from the PCL/CH‑hPRF scaffold reached 31.25% after 14 days, indicating a gradual and prolonged release of hPRF from the nanofibrous scaffold. After 28 days of immersion in simulated body fluid (SBF), the PCL/CH-hPRF scaffold exhibited higher bioactivity and enhanced biomineralization compared to the PCL scaffold. The PCL/CH-hPRF scaffold demonstrated excellent cell compatibility and promoted rapid osteogenic differentiation of HMSCs, with substantial calcium deposition observed over 14 days. Furthermore, the in ovo CAM assay revealed that the PCL/CH-hPRF scaffold induced approximately threefold higher blood vessel formation compared to the CH-hPRF scaffold. These results suggest that the PCL/CH-hPRF composite nanofiber scaffold possesses superior osteogenic, angiogenic, and biological properties, making it a promising candidate for bone tissue engineering applications.

Keywords

  • In ovo CAM,
  • Osteogenic differentiation,
  • Homogenized platelet-rich fibrin,
  • Biomineralization,
  • Electrospinning,
  • Nanofiber scaffold

References

  1. D. Tang, R.S. Tare, L.-Y. Yang, D.F. Williams, K.-L. Ou, R.O. Oreffo, Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration, Biomaterials 83 (2016) 363-382.
  2. I. Denry, L.T. Kuhn, Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering, Dental Materials 32(1) (2016) 43-53.
  3. H.-T. Lu, T.-W. Lu, C.-H. Chen, F.-L. Mi, Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering, International journal of biological macromolecules 128 (2019) 973-984.
  4. H. Tohidlou, S.S. Shafiei, S. Abbasi, M. Asadi-Eydivand, M. Fathi-Roudsari, Amine-functionalized single-walled carbon nanotube/polycaprolactone electrospun scaffold for bone tissue engineering: in vitro study, Fibers and Polymers 20(9) (2019) 1869-1882.
  5. A.K. Gaharwar, S. Mukundan, E. Karaca, A. Dolatshahi-Pirouz, A. Patel, K. Rangarajan, S.M. Mihaila, G. Iviglia, H. Zhang, A. Khademhosseini, Nanoclay-enriched poly (ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells, Tissue Engineering Part A 20(15-16) (2014) 2088-2101.
  6. D.G. Papageorgiou, E. Roumeli, Z. Terzopoulou, V. Tsanaktsis, K. Chrissafis, D. Bikiaris, Polycaprolactone/multi-wall carbon nanotube nanocomposites prepared by in situ ring opening polymerization: Decomposition profiling using thermogravimetric analysis and analytical pyrolysis–gas chromatography/mass spectrometry, Journal of Analytical and Applied Pyrolysis 115 (2015) 125-131.
  7. N. Omidvar, F. Ganji, M.B. Eslaminejad, In vitro osteogenic induction of human marrow‐derived mesenchymal stem cells by PCL fibrous scaffolds containing dexamethazone‐loaded chitosan microspheres, Journal of biomedical materials research Part A 104(7) (2016) 1657-1667.
  8. A. Khodabandeh, A.A. Yousefi, S. Jafarzadeh-Holagh, E. Vasheghani-Farahani, Fabrication of 3D microfibrous composite polycaprolactone/hydroxyapatite scaffolds loaded with piezoelectric poly (lactic acid) nanofibers by sequential near-field and conventional electrospinning for bone tissue engineering, Biomaterials Advances 166 (2025) 214053.
  9. M. Krishani, J.N. Chong, W.R. Lim, N. Jusoh, N.S. Sambudi, H. Suhaimi, Synthesis and Characterization of Keratin-Based Scaffold for Potential Tissue Engineering Applications, Fibers 13(7) (2025) 97.
  10. H. Zhang, Y. Tang, X. Zhou, Q. Liang, Y. Sun, B. Zhang, K. Zhao, Z. Wu, Enhanced compressive strength and in vitro degradation of porous pectin/calcium phosphate cement scaffolds by freeze casting without sintered, Journal of Materials Research and Technology 34 (2025) 125-135.
  11. I.S. Suhaimin, S. Abu Kassim, S. Ahmad Zubir, T.K. Abdullah, Effect of bioactive glass on the properties of glass/polymer composite scaffold fabricated by solvent casting/particulate leaching technique, Journal of Thermoplastic Composite Materials (2025) 08927057251314420.
  12. B. Mutlu, F. Demirci, M. Erginer, Ş. Duman, In Vitro Behavior of Boron‐Doped Baghdadite/Poly (vinylidene fluoride) Membrane Scaffolds Produced via Non‐Solvent Induced Phase Separation, Macromolecular Bioscience (2025) e00619.
  13. D. Huang, Z. Li, G. Li, F. Zhou, G. Wang, X. Ren, J. Su, Biomimetic structural design in 3D-printed scaffolds for bone tissue engineering, Materials Today Bio (2025) 101664.
  14. K. Ghosal, A. Chandra, G. Praveen, S. Snigdha, S. Roy, C. Agatemor, S. Thomas, I. Provaznik, Electrospinning over solvent casting: tuning of mechanical properties of membranes, Scientific reports 8(1) (2018) 1-9.
  15. U. D'Amora, M. D'Este, D. Eglin, F. Safari, C.M. Sprecher, A. Gloria, R. De Santis, M. Alini, L. Ambrosio, Collagen density gradient on three‐dimensional printed poly (ε‐caprolactone) scaffolds for interface tissue engineering, Journal of tissue engineering and regenerative medicine 12(2) (2018) 321-329.
  16. M.A. Woodruff, D.W. Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century, Progress in polymer science 35(10) (2010) 1217-1256.
  17. F.M. Ghorbani, B. Kaffashi, P. Shokrollahi, E. Seyedjafari, A. Ardeshirylajimi, PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation, Carbohydrate polymers 118 (2015) 133-142.
  18. S.R. Gomes, G. Rodrigues, G.G. Martins, M.A. Roberto, M. Mafra, C. Henriques, J.C. Silva, In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study, Materials Science and Engineering: C 46 (2015) 348-358.
  19. D. Semnani, E. Naghashzargar, M. Hadjianfar, F. Dehghan Manshadi, S. Mohammadi, S. Karbasi, F. Effaty, Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering, International Journal of Polymeric Materials and Polymeric Biomaterials 66(3) (2017) 149-157.
  20. R. Jayakumar, M. Prabaharan, S. Nair, H. Tamura, Novel chitin and chitosan nanofibers in biomedical applications, Biotechnology advances 28(1) (2010) 142-150.
  21. W.-T. Su, Y.-T. Wang, C.-M. Chou, Optimal fluid flow enhanced mineralization of MG-63 cells in porous chitosan scaffold, Journal of the Taiwan Institute of Chemical Engineers 45(4) (2014) 1111-1118.
  22. Y.-K. Hsu, S.-Y. Sheu, C.-Y. Wang, M.-H. Chuang, P.-C. Chung, Y.-S. Luo, J.-J. Huang, F. Ohashi, H. Akiyoshi, T.-F. Kuo, The effect of adipose-derived mesenchymal stem cells and chondrocytes with platelet-rich fibrin releasates augmentation by intra-articular injection on acute osteochondral defects in a rabbit model, The Knee 25(6) (2018) 1181-1191.
  23. V. Gassling, J. Hedderich, Y. Açil, N. Purcz, J. Wiltfang, T. Douglas, Comparison of platelet rich fibrin and collagen as osteoblast‐seeded scaffolds for bone tissue engineering applications, Clinical Oral Implants Research 24(3) (2013) 320-328.
  24. Y.W. Eom, J.-E. Oh, J.I. Lee, S.K. Baik, K.-J. Rhee, H.C. Shin, Y.M. Kim, C.M. Ahn, J.H. Kong, H.S. Kim, The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells, Biochemical and biophysical research communications 445(1) (2014) 16-22.
  25. Y.-J. Jee, Use of platelet-rich fibrin and natural bone regeneration in regenerative surgery, Journal of the Korean Association of Oral and Maxillofacial Surgeons 45(3) (2019) 121.
  26. H. Ye, J. Zhu, D. Deng, S. Jin, J. Li, Y. Man, Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration, Journal of Biomaterials Science, Polymer Edition 30(16) (2019) 1505-1522.
  27. S. Surucu, H.T. Sasmazel, Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds, International journal of biological macromolecules 92 (2016) 321-328.
  28. A. Shimojo, A. Perez, S. Galdames, I. Brissac, M. Santana, Stabilization of porous chitosan improves the performance of its association with platelet-rich plasma as a composite scaffold, Materials Science and Engineering: C 60 (2016) 538-546.
  29. H. Chi, X. Song, C. Song, W. Zhao, G. Chen, A. Jiang, X. Wang, T. Yu, L. Zheng, J. Yan, Chitosan-Gelatin Scaffolds Incorporating Decellularized Platelet-Rich Fibrin Promote Bone Regeneration, ACS Biomaterials Science & Engineering 5(10) (2019) 5305-5315.
  30. M. Ansarizadeh, S. Mashayekhan, M. Saadatmand, Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane, International journal of biological macromolecules 125 (2019) 383-391.
  31. J. Choukroun, F. Adda, C. Schoeffler, A. Vervelle, Une opportunité en paro-implantologie: le PRF, Implantodontie 42(55) (2001) e62.
  32. A. Edwards, D. Jarvis, T. Hopkins, S. Pixley, N. Bhattarai, Poly (ε‐caprolactone)/keratin‐based composite nanofibers for biomedical applications, Journal of Biomedical Materials Research Part B: Applied Biomaterials 103(1) (2015) 21-30.
  33. M. Rafiei, E. Jooybar, M.J. Abdekhodaie, M. Alvi, Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery, Materials Science and Engineering: C 113 (2020) 110913.
  34. O. Gryshkov, N.I. Klyui, V.P. Temchenko, V.S. Kyselov, A. Chatterjee, A.E. Belyaev, L. Lauterboeck, D. Iarmolenko, B. Glasmacher, Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants, Materials Science and Engineering: C 68 (2016) 143-152.
  35. J.-M. Rabanel, J. Faivre, G.D. Paka, C. Ramassamy, P. Hildgen, X. Banquy, Effect of polymer architecture on curcumin encapsulation and release from PEGylated polymer nanoparticles: Toward a drug delivery nano-platform to the CNS, European Journal of Pharmaceutics and Biopharmaceutics 96 (2015) 409-420.
  36. M. Mahmoodi, M. Khosroshahi, F. Atyabi, EARLY EXPERIMENTAL RESULTS OF THROMBOLYSIS USING CONTROLLED RELEASE OF TISSUE PLASMINOGEN ACTIVATOR ENCAPSULATED BY PLGA/CS NANOPARTICLES DELIVERED BY PULSE 532 nm LASER, Digest Journal of Nanomaterials & Biostructures (DJNB) 6(4) (2011).
  37. P. Ahmaditabar, M. Mahmoodi, R.A. Taheri, A. Asefnejad, Laser thrombolysis and in vitro release kinetics of tPA encapsulated in chitosan polysulfate-coated nanoliposome, Carbohydrate Polymers 299 (2023) 120225.
  38. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27(15) (2006) 2907-2915.
  39. W. Shao, J. He, F. Sang, Q. Wang, L. Chen, S. Cui, B. Ding, Enhanced bone formation in electrospun poly (l-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide, Materials Science and Engineering: C 62 (2016) 823-834.
  40. Q. Wang, Y. Chu, J. He, W. Shao, Y. Zhou, K. Qi, L. Wang, S. Cui, A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering, Materials Science and Engineering: C 80 (2017) 232-242.
  41. S. Surucu, K. Masur, H.T. Sasmazel, T. Von Woedtke, K.D. Weltmann, Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation, Applied Surface Science 385 (2016) 400-409.
  42. F. Roozbahani, N. Sultana, A. Fauzi Ismail, H. Nouparvar, Effects of chitosan alkali pretreatment on the preparation of electrospun PCL/chitosan blend nanofibrous scaffolds for tissue engineering application, Journal of Nanomaterials 2013 (2013).
  43. S.V. Fridrikh, H.Y. Jian, M.P. Brenner, G.C. Rutledge, Controlling the fiber diameter during electrospinning, Physical review letters 90(14) (2003) 144502.
  44. H.-W. Chen, M.-F. Lin, Characterization, Biocompatibility, and Optimization of Electrospun SF/PCL/CS Composite Nanofibers, Polymers 12(7) (2020) 1439.
  45. D.M. dos Santos, P.A. Chagas, I.S. Leite, N.M. Inada, S.R. de Annunzio, C.R. Fontana, S.P. Campana-Filho, D.S. Correa, Core-sheath nanostructured chitosan-based nonwovens as a potential drug delivery system for periodontitis treatment, International journal of biological macromolecules 142 (2020) 521-534.
  46. R. Sedghi, M. Gholami, A. Shaabani, M. Saber, H. Niknejad, Preparation of novel chitosan derivative nanofibers for prevention of breast cancer recurrence, European Polymer Journal 123 (2020) 109421.
  47. J. Liu, K. Yue, L. Xu, J. Wu, Z. Chen, L. Wang, W. Liu, W. Lu, Bonding performance of melamine-urea–formaldehyde and phenol-resorcinol–formaldehyde adhesive glulams at elevated temperatures, International Journal of Adhesion and Adhesives 98 (2020) 102500.
  48. S. Krainer, U. Hirn, Contact angle measurement on porous substrates: Effect of liquid absorption and drop size, Colloids and Surfaces A: Physicochemical and Engineering Aspects 619 (2021) 126503.
  49. H.Y. Erbil, The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review, Surface Science Reports 69(4) (2014) 325-365.
  50. F. Mirjalili, M. Mahmoodi, Controlled release of protein from gelatin/chitosan hydrogel containing platelet-rich fibrin encapsulated in chitosan nanoparticles for accelerated wound healing in an animal model, International Journal of Biological Macromolecules 225 (2023) 588-604.
  51. M. Kim, G. Kim, Electrospun PCL/phlorotannin nanofibres for tissue engineering: Physical properties and cellular activities, Carbohydrate polymers 90(1) (2012) 592-601.
  52. A. Mitropoulou, D.N. Markatos, A. Dimopoulos, A. Marazioti, C.-M. Mikelis, D. Mavrilas, Development and evaluation of biodegradable core-shell microfibrous and nanofibrous scaffolds for tissue engineering applications, Journal of Materials Science: Materials in Medicine 35(1) (2024) 10.
  53. E.V. Melnik, S.N. Shkarina, S.I. Ivlev, V. Weinhardt, T. Baumbach, M.V. Chaikina, M.A. Surmeneva, R.A. Surmenev, In vitro degradation behaviour of hybrid electrospun scaffolds of polycaprolactone and strontium-containing hydroxyapatite microparticles, Polymer Degradation and Stability 167 (2019) 21-32.
  54. H. Mndlovu, P. Kumar, L.C. du Toit, Y.E. Choonara, A review of bio material degradation assessment approaches employed in the biomedical field, NPJ Materials Degradation 8(1) (2024) 66.
  55. B.M. Baker, B. Trappmann, W.Y. Wang, M.S. Sakar, I.L. Kim, V.B. Shenoy, J.A. Burdick, C.S. Chen, Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments, Nature materials 14(12) (2015) 1262-1268.
  56. M. Fadaie, E. Mirzaei, B. Geramizadeh, Z. Asvar, Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties, Carbohydrate polymers 199 (2018) 628-640.
  57. N. Bölgen, Y.Z. Menceloğlu, K. Acatay, I. Vargel, E. Pişkin, In vitro and in vivo degradation of non-woven materials made of poly (ε-caprolactone) nanofibers prepared by electrospinning under different conditions, Journal of Biomaterials Science, Polymer Edition 16(12) (2005) 1537-1555.
  58. Z. Asvar, E. Mirzaei, N. Azarpira, B. Geramizadeh, M. Fadaie, Evaluation of electrospinning parameters on the tensile strength and suture retention strength of polycaprolactone nanofibrous scaffolds through surface response methodology, Journal of the mechanical behavior of biomedical materials 75 (2017) 369-378.
  59. I.K. Kwon, S. Kidoaki, T. Matsuda, Electrospun nano-to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential, Biomaterials 26(18) (2005) 3929-3939.
  60. C. Mahoney, D. Conklin, J. Waterman, J. Sankar, N. Bhattarai, Electrospun nanofibers of poly (ε-caprolactone)/depolymerized chitosan for respiratory tissue engineering applications, Journal of Biomaterials science, Polymer edition 27(7) (2016) 611-625.
  61. V. Venkatesan, A. Chandramouli, A. Pradeep, A.K. Vasudevan, V. Lakshmanan, J. Rangasamy, Enhanced ciprofloxacin release and antibacterial activity of composite bone cement beads for diabetic pedal osteomyelitis treatment, Materials Chemistry and Physics 339 (2025) 130700.
  62. M.F. Abazari, F. Nejati, N. Nasiri, Z.A.S. Khazeni, B. Nazari, S.E. Enderami, H. Mohajerani, Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction, Gene 720 (2019) 144096.
  63. E. Jain, N. Chinzei, A. Blanco, N. Case, L.J. Sandell, S. Sell, M.F. Rai, S.P. Zustiak, Platelet‐rich plasma released from polyethylene glycol hydrogels exerts beneficial effects on human chondrocytes, Journal of Orthopaedic Research® 37(11) (2019) 2401-2410.
  64. C. Mircioiu, V. Voicu, V. Anuta, A. Tudose, C. Celia, D. Paolino, M. Fresta, R. Sandulovici, I. Mircioiu, Mathematical modeling of release kinetics from supramolecular drug delivery systems, Pharmaceutics 11(3) (2019) 140.
  65. I. Abdullahi, I. Zainol, Synthesis, Characterization and Bioactivity of Chitosan Hydroxyapatite Composite Doped with Strontium, Solid State Phenomena 317 (2021) 217-226.
  66. S. Pathmanapan, P. Periyathambi, S.K. Anandasadagopan, Fibrin hydrogel incorporated with graphene oxide functionalized nanocomposite scaffolds for bone repair—In vitro and in vivo study, Nanomedicine: Nanotechnology, Biology and Medicine 29 (2020) 102251.
  67. C. del Rosario, M. Rodríguez-Évora, R. Reyes, A. Delgado, C. Évora, BMP-2, PDGF-BB, and bone marrow mesenchymal cells in a macroporous β-TCP scaffold for critical-size bone defect repair in rats, Biomedical materials 10(4) (2015) 045008.
  68. G. Cheng, X. Ma, J. Li, Y. Cheng, Y. Cao, Z. Wang, X. Shi, Y. Du, H. Deng, Z. Li, Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering, International journal of pharmaceutics 547(1-2) (2018) 656-666.
  69. G.T. Christopherson, H. Song, H.-Q. Mao, The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation, Biomaterials 30(4) (2009) 556-564.
  70. T.J. Webster, L.S. Schadler, R.W. Siegel, R. Bizios, Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin, Tissue engineering 7(3) (2001) 291-301.
  71. Y. Qian, Z. Zhang, L. Zheng, R. Song, Y. Zhao, Fabrication and characterization of electrospun polycaprolactone blended with chitosan-gelatin complex nanofibrous mats, Journal of Nanomaterials 2014 (2014).
  72. Y. Song, K. Lin, S. He, C. Wang, S. Zhang, D. Li, J. Wang, T. Cao, L. Bi, G. Pei, Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin, International journal of nanomedicine (2018) 505-523.
  73. R. Qi, X. Cao, M. Shen, R. Guo, J. Yu, X. Shi, Biocompatibility of electrospun halloysite nanotube-doped poly (lactic-co-glycolic acid) composite nanofibers, Journal of Biomaterials Science, Polymer Edition 23(1-4) (2012) 299-313.
  74. F. Norouz, R. Halabian, A. Salimi, M. Ghollasi, A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro, Materials Science and Engineering: C 103 (2019) 109857.
  75. M.M.M. De-Paula, S. Afewerki, B.C. Viana, T.J. Webster, A.O. Lobo, F.R. Marciano, Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity, Materials Science and Engineering: C 103 (2019) 109778.
  76. J. Choukroun, A. Diss, A. Simonpieri, M.-O. Girard, C. Schoeffler, S.L. Dohan, A.J. Dohan, J. Mouhyi, D.M. Dohan, Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 101(3) (2006) e56-e60.
  77. J.-S. Kim, M.-H. Jeong, J.-H. Jo, S.-G. Kim, J.-S. Oh, Clinical application of platelet-rich fibrin by the application of the double J technique during implant placement in alveolar bone defect areas, Implant dentistry 22(3) (2013) 244-249.
  78. M. Wu, G. Chen, Y.-P. Li, TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease, Bone research 4 (2016) 16009.
  79. D.N. Utomo, F. Mahyudin, K.D. Hernugrahanto, H. Suroto, M.Z. Chilmi, F.A. Rantam, Implantation of platelet rich fibrin and allogenic mesenchymal stem cells facilitate the healing of muscle injury: An experimental study on animal, International Journal of Surgery Open 11 (2018) 4-9.
  80. V. Lukášová, M. Buzgo, K. Vocetková, V. Sovková, M. Doupník, E. Himawan, A. Staffa, R. Sedláček, H. Chlup, F. Rustichelli, Needleless electrospun and centrifugal spun poly-ε-caprolactone scaffolds as a carrier for platelets in tissue engineering applications: A comparative study with hMSCs, Materials Science and Engineering: C 97 (2019) 567-575.
  81. C.A. Gregory, W.G. Gunn, A. Peister, D.J. Prockop, An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction, Analytical biochemistry 329(1) (2004) 77-84.
  82. Z. Wang, Y. Weng, S. Lu, C. Zong, J. Qiu, Y. Liu, B. Liu, Osteoblastic mesenchymal stem cell sheet combined with C houkroun platelet‐rich fibrin induces bone formation at an ectopic site, Journal of Biomedical Materials Research Part B: Applied Biomaterials 103(6) (2015) 1204-1216.
  83. Y. Blinder, D. Mooney, S. Levenberg, Engineering approaches for inducing blood vessel formation, Current opinion in chemical engineering 3 (2014) 56-61.
  84. X. Shi, K. Zhou, F. Huang, C. Wang, Interaction of hydroxyapatite nanoparticles with endothelial cells: internalization and inhibition of angiogenesis in vitro through the PI3K/Akt pathway, International journal of nanomedicine (2017) 5781-5795.
  85. C. Feng, J. Xue, X. Yu, D. Zhai, R. Lin, M. Zhang, L. Xia, X. Wang, Q. Yao, J. Chang, Co-inspired hydroxyapatite-based scaffolds for vascularized bone regeneration, Acta Biomaterialia 119 (2021) 419-431.
  86. S. Pezzatini, L. Morbidelli, R. Solito, E. Paccagnini, E. Boanini, A. Bigi, M. Ziche, Nanostructured HA crystals up-regulate FGF-2 expression and activity in microvascular endothelium promoting angiogenesis, Bone 41(4) (2007) 523-534.
  87. H.-J. Lai, C.-H. Kuan, H.-C. Wu, J.-C. Tsai, T.-M. Chen, D.-J. Hsieh, T.-W. Wang, Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing, Acta biomaterialia 10(10) (2014) 4156-4166.
  88. Z. Xie, C.B. Paras, H. Weng, P. Punnakitikashem, L.-C. Su, K. Vu, L. Tang, J. Yang, K.T. Nguyen, Dual growth factor releasing multi-functional nanofibers for wound healing, Acta biomaterialia 9(12) (2013) 9351-9359.