Synthesis, in Silico Pharmaceutical Properties, Anticancer and Anti-Inflammatory Activities of Novel Benzo[b]thiophene Derivative
- Department of Biology, Faculty of Science, Pamukkale University, Denizli 20160, Turkey
- Department of Chemistry, College of Science, University of Duhok, Duhok 42001, Iraq
- Biomedical Engineering, Faculty of Engineering and Architectural Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Department of Chemistry, Faculty of Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
Received: 2023-08-21
Revised: 2023-09-23
Accepted: 2023-09-28
Published in Issue 2023-09-30
Copyright (c) 2025 Copyright © 2024, The Author(s), under exclusive licence to Islamic Azad University

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
Sulfur-containing compounds have various biological functions, the most important of which are anti-inflammatory and anticancer effects. This study provides the first evaluation of the biological potential of a novel benzothiophene derivative, 3-iodo-2-phenylbenzo[b]thiophene (IPBT), with a special focus on its cytotoxic, anticancer, cell migration, colony formation and anti-inflammatory properties. The EC50 values of IPBT were determined in MDA-MB-231, HepG2, LNCaP, Caco-2, Panc-1, HeLa and Ishikawa cancer cell lines (126.67, 67.04, 127.59, 63.74, 76.72, 146.75 and 110.84 respectively). The compound was found to induce apoptosis by activating the expression levels of pro-apoptotic genes (BAX, CASP3, CASP8, CASP9, and P53) in cancer cells and effectively inhibit cell migration and colony formation. IPBT also significantly reduced inflammatory responses (Nitric oxide production) in LPS-induced RAW264.7 macrophage cells by proinflammatory genes (COX-2, iNOS, TNF-α, and IL-6). These findings suggest that IPBT may be a promising candidate for cancer treatment as well as a therapeutic agent for controlling inflammation and tissue repair.
Keywords
- In silico synthesis,
- Anticancer activity,
- Anti-inflammatory,
- Benzo[b]thiophene
References
- Hiremath, C.G., Heggnnavar, G.B., Kariduraganavar, M.Y., Hiremath, M.B.: Co-delivery of paclitaxel and curcumin to folate-positive cancer cells using Pluronic-coated iron oxide nanoparticles. Prog. Biomater. 8, 155–168 (2019). https://doi.org/10.1007/s40204-019-0118-5
- Ma, X., Yu, H.: Global burden of cancer. Yale J. Biol. Med. 79(3-4), 85–94 (2007).
- Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660
- Cao, W., Chen, H.-D., Yu, Y.-W., Li, N., Chen, W.-Q.: Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin. Med. J. 134(7), 783–791 (2021). https://doi.org/10.1097/CM9.0000000000001474
- Haberkorn, U.: What is cancer? In Advances in Nuclear Oncology, 1st ed.; CRC Press, Boca Raton, FL, USA, pp. 1–16 (2007). https://doi.org/10.3109/9781420091380-5
- Hanahan, H., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013
- Pedraza-Fariña, L.G.: Mechanisms of oncogenic cooperation in cancer initiation and metastasis. Yale J. Biol. Med. 79(3-4), 95–103 (2007).
- Hegde, P.S., Chen, D.S.: Top 10 challenges in cancer immunotherapy. Immunity 52(1), 17–35, 2020. https://doi.org/10.1016/j.immuni.2019.12.011
- Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., Li, Y.: Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 6, 263 (2021). https://doi.org/10.1038/s41392-021-00658-5
- Debela, D.T., Muzazu, S.G.Y., Manyazewal, T.: New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med. 9, 20503121211034366 (2021). https://doi.org/10.1177/20503121211034366
- Q. Nie., Y. Hu., X. Yu., X. Li., X. Fang: Induction and application of ferroptosis in cancer therapy, Cancer Cell Int. 22:12 (2022). 10.1186/s12935-021-02366-0
- Pucci, C., Martinelli, G., Ciofani, G.: Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience 13, 961 (2019). https://doi.org/10.3332/ecancer.2019.961
- Kalaria, P.N., Karad, S.C., Raval, D.K.: A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem. 158, 917–936 (2018). https://doi.org/10.1016/j.ejmech.2018.08.040
- T. Qadir., A. Amin., P.K. Sharma., I. Jeelani., H. Abe.: A review on medicinally important heterocyclic compounds, Open Med. Chem. J. 16: e2202280 (2022). 10.2174/18741045-v16-e2202280
- Mishra, R., Kumar, N., Mishra, I., Sachan, N.: A review on anticancer activities of thiophene and its analogs. Mini Rev. Med. Chem. 20(19), 1944–1965 (2020). https://doi.org/10.2174/1389557520666200715104555
- B. Rosada., A. Bekier., J. Cytarska., W. Płaziński., O. Zavyalova., A. Sikora., K. Dzitko., K.Z Łączkowski.: Benzo[b]thiophene-thiazoles as potent anti-Toxoplasma gondii agents: Design, synthesis, tyrosinase/tyrosine hydroxylase inhibitors, molecular docking study, and antioxidant activity, Eur. J. Med. Chem. 184:111765 (2019). https://doi.org/10.1016/j.ejmech.2019.111765
- Fakhr, I.M.I., Radwan, M.A.A., El-Batran, S., Abd El-Salam, O.M.E., El-Shenawy, S.M.: Synthesis and pharmacological evaluation of 2-substituted benzo[b]thiophenes as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 44(4), 1718–1725 (2009). https://doi.org/10.1016/j.ejmech.2008.02.034
- A. Singh., G. Singh., P.M.S. Bedi.: Thiophene derivatives: A potent multitargeted pharmacological scaffold, J. Heterocycl. Chem. 57(7):2658–2703 (2020). 10.1002/jhet.3990
- Shah, R., Verma, P.K.: Synthesis of thiophene derivatives and their anti-microbial, antioxidant, anticorrosion and anticancer activity. BMC Chem. 13, 54 (2019). https://doi.org/10.1186/s13065-019-0569-8
- Haridevamuthu, B., Manjunathan, T., Guru, A., Kumar, R.S., Rajagopal, R., Kuppusamy, P., Juliet, A., Gopinath, P., Arockiaraj, J.: Hydroxyl containing benzo[b]thiophene analogs mitigates the acrylamide induced oxidative stress in the zebrafish larvae by stabilizing the glutathione redox cycle. Life Sci. 298, 120507 (2022). https://doi.org/10.1016/j.lfs.2022.120507
- Mabkhot, Y.N., Kaal, N.A., Alterary, S., Mubarak, M.S., Alsayari, A., Muhsinah, A.B.: New thiophene derivatives as antimicrobial agents. J. Heterocycl. Chem. 56(10), 2845–2953 (2019). https://doi.org/10.1002/jhet.3688
- Archna, A., Pathania, S., Chawla, P.A.: Thiophene-based derivatives as anticancer agents: an overview on decade’s work. Bioorg. Chem. 101, 104026 (2020). https://doi.org/10.1016/j.bioorg.2020.104026
- Gad, E.M., Nafie, M.S., Eltamany, E.H., Hammad, M.S.A.G., Barakat, A., Boraei, A.T.A.: Discovery of new apoptosis-inducing agents for breast cancer based on ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate: synthesis, in vitro, and in vivo activity evaluation. Molecules 25(11), 2523 (2020). https://doi.org/10.3390/molecules25112523
- Deng, Q., Gu, J., Zhang, H., Zhang, Y., Meng, X.: Sustainable access to benzothiophene derivatives bearing a trifluoromethyl group via a three-component domino reaction in water. Org. Biomol. Chem. 2022, 20, 6611–6619. https://doi.org/10.1039/D2OB01034H
- Keri, R.S., Chand, K., Budagumpi, S., Somappa, S.B., Patil, S.A., Nagaraja, B.M.: An overview of benzo[b]thiophene-based medicinal chemistry. Eur. J. Med. Chem. 138, 1002–1033 (2017). https://doi.org/10.1016/j.ejmech.2017.07.038
- de Vasconcelos, A., Campos, V.F., Nedel, F., Seixas, F.K., Dellagostin, O.A., Smith, K.R., Pereira de Pereira, C.M.: Cytotoxic and apoptotic effects of chalcone derivatives of 2-acetyl thiophene on human colon adenocarcinoma cells. Cell Biochem. Funct. 31(4), 289–297 (2013). https://doi.org/10.1002/cbf.2897
- Zarei, O., Azimian, F., Hamzeh-Mivehroud, M., Shahbazi Mojarrad, J., Hemmati, S., Dastmalchi, S.: Design, synthesis, and biological evaluation of novel benzo[b]thiophene-diaryl urea derivatives as potential anticancer agents. Med. Chem. Res. 29, 1438–1448 (2020). https://doi.org/10.1007/s00044-020-02559-8
- El-Metwally, S.A., Khalil, A.K., El-Naggar, A.M., El-Sayed, W.M.: Novel Tetrahydrobenzo[b] Thiophene Compounds Exhibit Anticancer Activity through Enhancing Apoptosis and Inhibiting Tyrosine Kinase, Anti-Cancer Agents Med. Chem. 18(12):1761–1769 (2018). 10.2174/1871520618666180813120558
- Kosmalski, T., Hetmann, A., Studzińska, R., Baumgart, S., Kupczyk, D., Roszek, K.: The oxime ethers with heterocyclic, alicyclic and aromatic moiety as potential anti-cancer agents. Molecules 2022, 27(4), 1374. https://doi.org/10.3390/molecules27041374
- Zhang, W., Ma, T., Li, S., Yang, Y., Guo, J., Yu, W., Kong, L.: Antagonizing STAT3 activation with benzo[b]thiophene 1,1-dioxide based small molecules. Eur. J. Med. Chem. 125, 538–550 (2017). https://doi.org/10.1016/j.ejmech.2016.09.068
- Xue, D., Chen, W., Neamati, N.: Discovery, structure-activity relationship study and biological evaluation of 2-thioureidothiophene-3-carboxylates as a novel class of C-X-C chemokine receptor 2 (CXCR2) antagonists. Eur. J. Med. Chem. 204, 112387 (2020). https://doi.org/10.1016/j.ejmech.2020.112387
- D. Caro., D. Rivera,, Y. Ocampo,, K. Müller,, L.A. Franco.: A promising naphthoquinone [8-hydroxy-2-(2-thienylcarbonyl)naphtho[2,3-b]thiophene-4,9-dione] exerts anti-colorectal cancer activity through ferroptosis and inhibition of MAPK signaling pathway based on RNA sequencing, Open Chem. 18:1242–1255 (2020). 10.1515/chem-2020-0170
- Rodrigues, J. R., Charris, J., Camacho, J., Barazarte, A., Gamboa, N., Nitzsche, B., Höpfner, M., Lein, M., Jung, K., Abramjuk, C.: N′-Formyl-2-(5-nitrothiophen-2-yl) benzothiazole-6-carbohydrazide as a potential anti-tumour agent for prostate cancer in experimental studies. J. Pharm. Pharmacol. 65(3), 411–422 (2013). https://doi.org/10.1111/j.2042-7158.2012.01607.x
- Romagnoli, R., Preti, D., Hamel, E., Bortolozzi, R., Viola, G., Brancale, A., Ferla, S., Morciano, G., Pinton, P.: Concise synthesis and biological evaluation of 2-aryl-3-anilinobenzo[b]thiophene derivatives as potent apoptosis-inducing agents. Bioorg. Chem. 112, 104919 (2021). https://doi.org/10.1016/j.bioorg.2021.104919
- Li, W.-Z., Xi, H.-Z., Wang, Y.-J., Ma, H.-B., Cheng, Z.-Q., Yang, Y., Wu, M.-L., Liu, T.-M., Yang, W., Wang, Q., Liao, M.-Y., Zhang, Y.-W., Xia, Y.: Design, synthesis, and biological evaluation of benzo[b]thiophene 1,1‐dioxide derivatives as potent STAT3 inhibitors. Chem. Biol. Drug Des. 98(5), 835–849 (2021). https://doi.org/10.1111/cbdd.13939
- Abd El-Rahman, S.A., Wafa, E.I., Ebeid, K., Geary, S.M., Naguib, Y.W., El-Damasy, A.K., Salem, A.K.: Thiophene derivative-loaded nanoparticles mediate anticancer activity through the inhibition of kinases and microtubule assembly. Adv. Drug Deliv. Rev. 170, 1–10 (2021). https://doi.org/10.1002/adtp.202100058
- Maka, K.K., Shiminga, Z., Epemolud, O., Dinkova-Kostova, A.T., Wells, G., Gazaryan, I.G., Sakirollak, R., Mohd, Z., Pichika, M.R.: Synthesis and anti-inflammatory activity of novel 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-derived NRF2 activators. Preprint (Gad). http://dx.doi.org/10.2139/ssrn.4097876
- Khatri, C.K., Indalkar, K.S., Patil, C.R., Goyal, S.N., Chaturbhuj, G.U.: Novel 2-phenyl-4,5,6,7-tetrahydro[b]benzothiophene analogues as selective COX-2 inhibitors: design, synthesis, anti-inflammatory evaluation, and molecular docking studies. Bioorg. Med. Chem. Lett. 27(8), 1721–1726 (2017). https://doi.org/10.1016/j.bmcl.2017.02.076
- Cruz, R.M.D., Mendonça-Junior, F.J.B., de Mélo, N.B., Scotti, L., de Araújo, R.S.A., de Almeida, R.N., de Moura, R.O.: Thiophene-based compounds with potential anti-inflammatory activity. Pharmaceutics 14(7), 692 (2021). https://doi.org/10.3390/ph14070692
- A.C.V. Aguiar., R.O. Moura., J.F.B. Mendonça Junior., H.A.O. Rocha., R.B.G. Câmara., M.S.C. Schiavon.: Evaluation of the antiproliferative activity of 2-amino thiophene derivatives against human cancer cell lines, Biomed. Pharmacother. 84:403–414 (2016). https://doi.org/10.1016/j.biopha.2016.09.026
- Banerjee, K., Rai, V.R., Umashankar, M.: Effect of peptide-conjugated nanoparticles on cell lines. Prog. Biomater. 8, 11–21 (2019). https://doi.org/10.1007/s40204-019-0106-9
- Kouhestani, F., Dehabadi, F., Hasan Shahriari, M., Motamedian, S.R. Allogenic vs.: Synthetic granules for bone tissue engineering: an in vitro study. Prog. Biomater. 7, 133–141 (2018). https://doi.org/10.1007/s40204-018-0092-3
- Liao, X.; Huang, J.; Lin, W.; Long, Z.; Xie, Y.; Ma, W.: APTM, a thiophene heterocyclic compound, inhibits human colon cancer HCT116 cell proliferation through p53-dependent induction of apoptosis. DNA Cell Biol. 37(2), 119–128 (2018). https://doi.org/10.1089/dna.2017.3962
- Mutlu, D., Cakir, C., Ozturk, M., Arslan, S.: Anticancer and apoptotic effects of a polysaccharide extract isolated from Lactarius chrysorrheus Fr. in HepG2 and PANC-1 cell lines. Arch. Biol. Sci. 74, 315–324 (2022). Mutlu, D., Cakir, C., Ozturk, M., Arslan, S.: Anticancer and apoptotic effects of a polysaccharide extract isolated from Lactarius chrysorrheus Fr. in HepG2 and PANC-1 cell lines. Arch. Biol. Sci. 74, 315–324 (2022). https://doi.org/10.2298/ABS220803030M
- Elmongy, E. I., Attallah, N. G. M., Altwaijry, N., AlKahtani, M. M., & Henidi, H. A.: Design and synthesis of new thiophene/thieno[2,3-d] pyrimidines along with their cytotoxic biological evaluation as tyrosine kinase inhibitors in addition to their apoptotic and autophagic induction. Molecules, 27(1), 123 (2022). https://doi.org/10.3390/molecules27010123
- Yılmaz, C., Pirdawid, A.O., Babat, C.F., Konuş, M., Çetin, D., Kıvrak, A., Algso, M.A.S., Arslan, Ş., Mutlu, D., Otur, Ç., Kurt Kızıldoğan, A.: A thiophene derivative, 2-bromo-5-(2-(methylthio)phenyl) thiophene, has effective anticancer potential with other biological properties. ChemistrySelect 7(15), e202200784 (2022). https://doi.org/10.1002/slct.202200784
- Griess, P.: Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt „Ueber einige Azoverbindungen. Ber. Dtsch. Chem. Ges. 12, 426–428 (1879). https://doi.org/10.1002/cber.187901201117