skip to main content
Menu
Original Article

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

Authors

Abstract

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3Co alloy. The SEM images revealed that the particles of Pt3Co were deposited uniformly on the surface of MWCNT with a diameter of 10 nm. EDX analysis confirmed the surface segregation of Co and Pt occurred (1:3 surface atomic ratio Pt-Co) for the Pt3Co/MWCNT nanocomposite. The Pt3Co/MWCNTs and Pt/MWCNTs electrocatalysts’ electrochemical performance was assessed against the methanol oxidation reaction (MOR) in 0.5 M H2SO4 solution using the chronoamperometry (CA) and the cyclic voltammetry (CV) methods. The minimum onset potential and the largest oxidation current density were obtained at Pt3Co/MWCNTs electrocatalyst. The Pt3Co/MWCNT catalyst with a good alloying degree has been shown to have better anti-poisoning ability, electrochemical activity, and long-term durability than Pt/MWCNT catalysts, approved by the bimetallic catalysts’ bi-functional mechanism.

Keywords