skip to main content
Menu
Original Article

Preparation of α-Fe2O3 Nano-photocatalyst supported on Cd(II)-Terephthalic MOF for photocatalytic removal of Cefazolin aqueous solution

Authors

Abstract

The main purpose of this study was to investigate the photocatalytic decomposition of the antibiotic Cefazolin (CFZ) from aqueous solutions using a new effective catalyst. This catalyst was made of α-Fe2O3-supported nanoparticles on a metal-organic framework (MOF). The synthesis of Nano α-Fe2O3 photocatalyst was performed by the reflux condensation method. The MOF was synthesized using Cadmium nitrate and Terephthalic acid and Nano α-Fe2O3 supported on MOF using a solid-state distribution (SSD) method. FTIR, XRD, SEM, EDX, N2 adsorption-desorption and TGA technique were used for the identification of the catalyst. Analysis of these results revealed that α-Fe2O3 circular nanoparticles bonded together and occupy a large area on the MOF crystal surfaces. The BET surface area and the pore diameter of ​​the catalyst obtained were 479 m2g-1 and 3.86 nm respectively. UV/H2O2 photocatalytic processes were applied for the decomposition of CFZ from aqueous solutions. This process was optimized and modeled using the full factorial method. Initial concentrations of CFZ, pH, α-Fe2O3/MOF amounts and initial concentration of H2O2 were the variables for the determination of optimal conditions and mathematical models. The highest degradation percentage of CFZ in the optimum condition (CFZ=30 ppm, pH=8, H2O2=5ppm, catalyst=150mg.l-1) was 85.88%. This photocatalyst reaction has pseudo-first-order kinetic with a constant rate of 0.0752 min-1 and it also matched the Langmuir–Hinshelwood model.

Keywords