skip to main content
Menu

Keyword: Buckling

Original Article
Buckling analysis of graphene nanosheets based on nonlocal elasticity theory

This paper proposed analytical solutions for the buckling analysis of rectangular single-layered graphene sheets under in-plane loading on all edges simply is supported. The characteristic equations of the graphene sheets are derived and the analysis formula is based on the nonlocal Mindlin plate. This theory is considering both the small length scale effects and transverse […]

Original Article
Buckling of nanotubes under compression considering surface effects

In this paper, the modified Euler-Bernoulli beam model is presented to examine the influence of surface elasticity and residual surface tension on the critical force of axial buckling of nanotubes in the presence of rotary inertia. An explicit solution is derived for the buckling loads of microscaled Euler beams considering surface effects. The size-dependent buckling […]

Original Article
Buckling analysis of a size-dependent functionally graded nanobeam resting on Pasternak’s foundations

Buckling analysis of a functionally graded (FG) nanobeam resting on two-parameter elastic foundation is presented based on third-order shear deformation beam theory (TOSDBT). The in-plane displacement of TOSDBT has parabolic variation through the beam thickness. Also, TOSDBT accounts for shear deformation effect and verifies stress-free boundary conditions on upper and lower faces of FG nanobeam. […]

Original Article
Bending, buckling, and vibration analysis of functionally graded nanobeams using an inverse trigonometric beam theory

In this study, an inverse trigonometric nanobeam theory is applied for the bending, buckling, and free vibration analysis of nanobeams using Eringen’s nonlocal theory. The present theory satisfies zero shear stress conditions at the top and bottom surfaces of the nanobeam using constitutive relations. Equations of motion are derived by applying Hamilton’s principle. The present […]

Original Article
The effect of magnetic field on buckling and nonlinear vibrations of Graphene nanosheets based on nonlocal elasticity theory

In this paper, the buckling behavior and nonlinear vibrations of graphene nanosheets in the magnetic field are studied analytically. By considering mechanical and magnetic interactions, new relationships have been proposed for the forces exerted by the magnetic field. The nonlinear governing equation is derived using Kirchhoff’s thin plate theory in conjunction with the nonlocal strain […]