skip to main content
Menu
Original Article

Using spray dried nanofibrillated Cellulose as an alternative to upgrading its effect in PLA nanocomposite

Authors

Abstract

This research used an oven and spray drying method to dry nanofibrillated cellulose (NFC) and evaluates its effect on polylactic acid (PLA) nanocomposite properties. As shown by atomic force microscopy (AFM), the average size of nanocellulose in the spray-dried sample (NCSD) was 84-96 nm. However, the average size of nanocellulose obtained from oven drying was 647-697 µm. The average size of the NCSD sample indicates that spray drying kept nanocellulose in the nano-scale range after drying. A melting process was then used to reinforce the polylactic acid matrix with the spray and oven-dried nanocellulose. Compared to neat PLA and PLA-containing oven-dried forms of nanocellulose (PLA-NCOD), our results showed a significant improvement in the mechanical strength of nanocomposites containing PLA-NCSD. PLA-NCSD nanocomposite demonstrated greater thermal stability than neat PLA and PLA-NCOD when subjected to thermal analysis. This study clearly illustrates the comparative effect of spray-dried nanocellulose on reinforced nanocellulose/PLA composites.

Graphical Abstract

Keywords

References

1. Mishra R. K., Sabu A., Tiwari S. K., (2018), Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. J. Saudi. Chem. Soc. 22: 949-978.
2. Trache D., Tarchoun A. F., Derradji M., Hamidon T. S., Masruchin N., Brosse N., Hussin M. H., (2020), Nanocellulose: From fundamentals to advanced applications. Front. Chem. 8: 392-396.
3. Jonoobi M., Oladi R., Davoudpour Y., Oksman K., Dufresne A., Hamzeh Y., Davoodi R., (2015), Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose. 22: 935-969.
4. Yeganeh F., Behrooz R., Rahimi M., (2017), The effect of Sulfuric acid and Maleic acid on characteristics of nano-cellulose produced from waste office paper. Int. J. Nano Dimens. 8: 206-215.
5. Dashtbani R., Afra E., (2015), Producing cellulose nanofiber from cotton wastes by electrospinning method. Int. J. Nano Dimens. 6: 1-9.
6. Huang L., Zhang X., Xu M., Chen J., Shi Y., Huang C., Wang S., An S., Li C., (2018), Preparation and mechanical properties of modified nanocellulose/PLA composites from cassava residue. AIP Adv. 8: 025116-025120.
7. Kumari S. V. G., Pakshirajan K., Pugazhenthi G., (2022), Recent advances and future prospects of cellulose, starch, chitosan, polylactic acid and polyhydroxyalkanoates for sustainable food packaging applications. Int. J. Biol. Macromol. 30: 163-182.
8. Taib N.-A. A. B., Rahman M. R., Huda D., Kuok K. K., Hamdan S., Bakri M. K. B., Julaihi M. R. M. B., Khan A., (2022), A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull. 2: 1-35.
9. Dhali K., Daver F., Cass P., Adhikari B., (2022), Surface modification of the cellulose nanocrystals through vinyl silane grafting. Int. J. Biol. Macromol. 200: 397-408.
10. Eichhorn S. J., Etale A., Wang J., Berglund L. A., Li Y., Cai Y., Chen C., Cranston E. D., Johns M. A., Fang Z., (2022), Current international research into cellulose as a functional nanomaterial for advanced applications. J. Mater. Sci. 57: 5697-5767.
11. Thakur V., Guleria A., Kumar S., Sharma S., Singh K., (2021), Recent advances in nanocellulose processing, functionalization and applications: A review. Mater. Adv. 2: 1872-1895.
12. Mokhena T., Sefadi J., Sadiku E., John M., Mochane M., Mtibe A., (2018), Thermoplastic processing of PLA/cellulose nanomaterials composites. Polym. 10: 1363-1367.
13. Norizan M. N., Shazleen S. S., Alias A. H., Sabaruddin F. A., Asyraf M. R. M., Zainudin E. S., Abdullah N., Samsudin M. S., Kamarudin S. H., Norrrahim M. N. F., (2022), Nanocellulose-based nanocomposites for sustainable applications: A review. Nanomater. 12: 3483-3487.
14. Foster E. J., Moon R. J., Agarwal U. P., Bortner M. J., Bras J., Camarero-Espinosa S., Chan K. J., Clift M. J., Cranston E. D., Eichhorn S. J., (2018), Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 47: 2609-2679.
15. Scaffaro R., Botta L., Lopresti F., Maio A., Sutera F., (2017), Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose. 24: 447-478.
16. Chen Y. W., Lee H. V., Abd Hamid S. B., (2017), Facile production of nanostructured cellulose from Elaeis guineensis empty fruit bunch via one pot oxidative-hydrolysis isolation approach. Carbohydr. Polym. 157: 1511-1524.
17. Pires J. R., Souza V. G., Fernando A. L., (2019), Valorization of energy crops as a source for nanocellulose production–current knowledge and future prospects. Ind. Crops. Prod. 140: 111642-111646.
18. Nagarajan K., Ramanujam N., Sanjay M., Siengchin S., Surya Rajan B., Sathick Basha K., Madhu P., Raghav G., (2021), A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization. Polym. Compos. 42: 1588-1630.
19. Ang S., Haritos V., Batchelor W., (2019), Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption. Cellulose. 26: 4767-4786.
20. Wang Y., Wei X., Li J., Wang F., Wang Q., Zhang Y., Kong L., (2017), Homogeneous isolation of nanocellulose from eucalyptus pulp by high pressure homogenization. Ind. Crops. Prod. 104: 237-241.
21. Lindström T., (2017), Aspects on nanofibrillated cellulose (NFC) processing, rheology and NFC-film properties. Curr. Opin. Colloid Interf. Sci. 29: 68-75.
22. Poyraz B., Tozluoğlu A., Candan Z., Demir A., (2017), Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites. J. Polym. Eng. 37: 921-931.
23. Campos A. D., Neto A. R., Rodrigues V. B., Kuana V. A., Correa A. C., Takahashi M. C., Mattoso L. H., Marconcini J. M., (2017), Production of cellulose nanowhiskers from oil palm mesocarp fibers by acid hydrolysis and microfluidization. J. Nanosci. Nanotechnol. 17: 4970-4976.
24. Rashid S., Dutta H., (2020), Characterization of nanocellulose extracted from short, medium and long grain rice husks. Ind. Crops. Prod. 154: 112627-112631.
25. Abdulkhani A., Hosseinzadeh J., Dadashi S., Mousavi M., (2015), A study of morphological, thermal, mechanical and barrier properties of PLA based biocomposites prepared with micro and nano sized cellulosic fibers. Cellul. Chem. Technol. 49: 597-605.
26. Supian M. A. F., Amin K. N. M., Jamari S. S., Mohamad S., (2020), Production of cellulose nanofiber (CNF) from empty fruit bunch (EFB) via mechanical method. J. Environ. Chem. Eng. 8: 103024-103027.
27. Gemmer R. E., Borsoi C., Hansen B., Dahlem Júnior M. A., Francisquetti E. L., Rossa Beltrami L. V., Zattera A. J., Catto A. L., (2021), Extraction of nanocellulose from yerba mate residues using steam explosion, TEMPO-mediated oxidation and ultra-fine friction grinding. J. Nat. Fibers. 19: 10539-10549.
28. Wang H., Zhang X., Jiang Z., Yu Z., Yu Y., (2016), Isolating nanocellulose fibrills from bamboo parenchymal cells with high intensity ultrasonication. Holzforschung. 70: 401-409.
29. Yang X., Han F., Xu C., Jiang S., Huang L., Liu, L., Xia Z., (2017), Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk. Ind. Crops. Prod. 109: 241-247.
30. Das D., Das M. J., Muchahary S., Deka S. C., (2019), Nanocellulose-based paper from banana peduncle using high-intensity ultrasonication. In Applied Food Science and Eng. with Ind. Applic. (pp. 29-46): Apple Academic Press.
31. Phanthong P., Reubroycharoen P., Hao X., Xu G., Abudula A., Guan G., (2018), Nanocellulose: Extraction and application. Carbon Resour. Convers. 1: 32-43.
32. Sinquefield S., Ciesielski P. N., Li K., Gardner D. J., Ozcan S., (2020), Nanocellulose dewatering and drying: Current state and future perspectives. ACS Sustainable Chem. Eng. 8: 9601-9615.
33. Noguchi T., Niihara K.-i., Iwamoto R., Matsuda G.-i., Endo M., Isogai, A., (2021), Nanocellulose/polyethylene nanocomposite sheets prepared from an oven-dried nanocellulose by elastic kneading. Compos. Sci. Technol. 207: 108734-108737.
34. Zimmermann M. V., Borsoi C., Lavoratti A., Zanini M., Zattera A. J., Santana R. M., (2016), Drying techniques applied to cellulose nanofibers. J. Reinf. Plast. Compos. 35: 628-643.
35. Hanif Z., Jeon H., Tran T. H., Jegal J., Park S.-A., Kim S.-M., Park J., Hwang S. Y., Oh D. X., (2018), Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion. J. Polym. Res. 25: 1-11.
36. Huang J., Dufresne A., Lin N., (2019), Nanocellulose: From Fundamentals to Adv. Mater: John Wiley & Sons.
37. Wang L., Sanders J. E., Gardner D. G., Han Y., (2016), In-situ modification of cellulose nanofibrils by organosilanes during spray drying. Ind. Crops Prod. 93: 129-135.
38. Perić M., Putz R., Paulik C., (2019), Influence of nanofibrillated cellulose on the mechanical and thermal properties of poly (lactic acid). Eur. Polym. J. 114: 426-433.
39. He L., Song F., Li D.-F., Zhao X., Wang X.-L., Wang Y.-Z., (2020), Strong and tough polylactic acid based composites enabled by simultaneous reinforcement and interfacial compatibilization of microfibrillated cellulose. ACS Sustain. Chem. Eng. 8: 1573-1582.
40. Wang X., Zhang Y., Jiang H., Song Y., Zhou Z., Zhao H., (2016), Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology. Mater. Lett. 183: 179-182.
41. Park C.-W., Han S.-Y., Namgung H.-W., Seo P.-N., Lee S.-H., (2017), Effect of spray-drying condition and surfactant addition on morphological characteristics of spray-dried nanocellulose. J. Environ. Sci. 33: 33-38.
42. Furtado M. R., da Matta V. M., Carvalho C. W., Magalhães W. L., Rossi A. L., Tonon R. V., (2021), Characterization of spray-dried nanofibrillated cellulose and effect of different homogenization methods on the stability and rheological properties of the reconstituted suspension. Cellulose. 28: 207-221.
43. Zhao J., Zhang W., Zhang X., Zhang X., Lu C., Deng Y., (2013), Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohyd. Polym. 97: 695-702.
44. Oliaei E., Lindén P. A., Wu Q., Berthold F., Berglund L., Lindström T., (2020), Microfibrillated lignocellulose (MFLC) and nanopaper films from unbleached kraft softwood pulp. Cellulose. 27: 2325-2341.
45. Balea A., Blanco A., Delgado-Aguilar M., Monte M. C., Tarres Q., Mutjé P., Negro C., (2021), Nanocellulose characterization challenges. Bioresources. 16: 4382-4410.
46. Lee H., Mani S., (2017), Mechanical pretreatment of cellulose pulp to produce cellulose nanofibrils using a dry grinding method. Ind. Crops. Prod. 104: 179-187.
47. Kar K. K., Rana S., Pandey J., (2015), Handbook of polymer nanocomposites processing, performance and application: Springer.
48. Li K., Mcgrady D., Zhao X., Ker D., Tekinalp H., He X., Qu J., Aytug T., Cakmak E., Phipps J., (2021), Surface-modified and oven-dried microfibrillated cellulose reinforced biocomposites: Cellulose network enabled high performance. Carbohyd. Polym. 256: 117525-117529.
49. Tian J., Cao Z., Qian S., Xia Y., Zhang J., Kong Y., Sheng K., Zhang Y., Wan Y., Takahashi J., (2022), Improving tensile strength and impact toughness of plasticized poly (lactic acid) biocomposites by incorporating nanofibrillated cellulose. Nanotechnol. Rev. 11: 2469-2482.
50. Ansari F., Skrifvars M., Berglund L., (2015), Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Compos. Sci. Technol. 117: 298-306.
51. Nagalakshmaiah M., Mortha G., Dufresne A., (2016), Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Carbohydr. Polym. 136: 945-954.
52. Li Y.-D., Fu Q.-Q., Wang M., Zeng J.-B., (2017), Morphology, crystallization and rheological behavior in poly (butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydr. Polym. 164: 75-82.
53. Sapkota J., Natterodt J. C., Shirole A., Foster E. J., Weder C., (2017), Fabrication and properties of polyethylene/cellulose nanocrystal composites. Macromol. Mater. Eng. 302: 1600300-1600304.
54. Wei L., Agarwal U. P., Hirth K. C., Matuana L. M., Sabo R. C., Stark N. M., (2017), Chemical modification of nanocellulose with canola oil fatty acid methyl ester. Carbohydr. Polym. 169: 108-116.
55. Mondragon G., Peña-Rodriguez C., González A., Eceiza A., Arbelaiz A., (2015), Bionanocomposites based on gelatin matrix and nanocellulose. Eur. Polym. J. 62: 1-9.
56. Khoo R., Ismail H., Chow W., (2016), Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Procedia. Chem. 19: 788-794.
57. Gan P., Sam S., Abdullah M. F. B., Omar M. F., (2020), Thermal properties of nanocellulose-reinforced composites: A review. J. Appl. Polym. Sci. 137: 48544-48548.
58. Spinella S., Re G. L., Liu B., Dorgan J., Habibi Y., Leclere P., Raquez J.-M., Dubois P., Gross R. A., (2015), Polylactide/cellulose nanocrystal nanocomposites: Efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polym. 65: 9-17.
59. Ghasemi S., Behrooz R., Ghasemi I., Yassar R. S., Long F., (2018), Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA). J. Thermoplast. Compos. Mater. 31: 1090-1101.
60. Ding W. D., Pervaiz M., Sain M., (2018), Cellulose-enabled polylactic acid (PLA) nanocomposites: Recent developments and emerging trends. In Functional biopolym. (pp. 183-216).
61. Shojaeiarani J., Bajwa D. S., Chanda S., (2021), Cellulose nanocrystal based composites: A review. Compos. Part C: Open Access. 5: 100164-100167.
62. Zaaba N. F., Jaafar M., Ismail H., (2021), Tensile and morphological properties of nanocrystalline cellulose and nanofibrillated cellulose reinforced PLA bionanocomposites: A review. Polym. Eng. Sci. 61: 22-38.
63. Yang W., Dominici F., Fortunati E., Kenny J. M., Puglia D., (2015), Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly (lactic) acid films: Effect of cellulose nanocrystals and a masterbatch process. RSC Adv. 5: 32350-32357.
64. Gitari B., Chang B. P., Misra M., Navabi A., Mohanty A. K., (2019), A comparative study on the mechanical, thermal, and water barrier properties of PLA nanocomposite films prepared with bacterial nanocellulose and cellulose nanofibrils. Bioresources. 14: 1867-1889.
65. Perić M., Putz R., Paulik C., (2019), Influence of nanofibrillated cellulose on the mechanical and thermal properties of poly (lactic acid). Eur. Polym. J. 114: 426-433.
66. Immonen K., Lahtinen P., Pere J., (2017), Effects of surfactants on the preparation of nanocellulose-PLA composites. Bioeng. 4: 91-96.
67. Peng Y., Gardner D. J., Han Y., (2015), Characterization of mechanical and morphological properties of cellulose reinforced polyamide 6 composites. Cellulose. 22: 3199-3215.
68. Immonen K., Lahtinen P., Pere J., (2017), Effects of surfactants on the preparation of nanocellulose-PLA composites. Bioengineering. 4: 91-96.
69. Lu J., Sun C., Yang K., Wang K., Jiang Y., Tusiime R., Yang Y., Fan F., Sun Z., Liu Y., (2019), Properties of polylactic acid reinforced by hydroxyapatite modified nanocellulose. Polymers. 11: 1009-1012.