References

1. Nabi Bidhendi G., Mehrdadi N., Firouzbakhsh M., (2021), Removal of lead from wastewater by iron–benzenetricarboxylate metal-organic frameworks. Chem. Methodol. 5: 271-284.

2. Hatami A., Heydarinasab A., Akbarzadehkhiyavi A., Pajoum Shariati F., (2021), An introduction to nanotechnology and drug delivery. Chem. Methodol. 5: 153-165.

3. Jabbari R., Ghasemi N., (2021), Investigating methylene blue dye adsorption isotherms using silver nano particles provided by aqueous extract of tragopogon buphthalmoides. Chem. Methodol. 5: 21-29.

4. Behmaneshfar A., Sadrnia A., Karimi-Maleha H., (2020), Application of box–behnken experimental design for optimizing the performance of reduced graphene/Fe3O4 nano adsorbent for removal of raloxifene anticancer drug. Chem. Methodol. 4: 679-694.

5. Iravani S., Korbekandi H., Mirmohammadi S. V., Zolfaghari B., (2014), Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharmaceut. Sci. 9: 385-406.

6. Pal G., Rai P., Pandey A., (2019), Green synthesis of nanoparticles: A greener approach for a cleaner future. Green Syn. Charac. Appl. Nanopart. Elsevier, 1-26.

7. Mahmood S., Atiya A., Abdulrazzak F., Alkaim A., Hussein F., (2021), A review on applications of carbon nanotubes (CNTs) in solar cells. J. Medic. Chem. Sci. 4: 225-229.

8. Fazal-ur-Rehman M., Qayyum I., (2020), Biomedical scope of gold nanoparticles in medical sciences; an advancement in cancer therapy. J. Med. Chem. Sci. 3: 399-407.

9. Mostaghni F., Taat F., (2020), CoFe2O4 as green and efficient catalyst for synthesis of multisubstituted imidazoles. Euras. Chem. Comm. 2: 427-432.

10. Kreydie S., Al-Abdaly B., (2021), Synthesis, characterization and evaluation of inhibition corrosion of bacterial cellulose/metal oxides nanocomposites. Euras. Chem. Comm. 3: 706-714.

11. Selvakani P., Mariappan R., (2021), Chapter One - Biosynthesis of nanoparticles and their roles in numerous areas. Compreh. Anal. Chem. 94: 1- 47.

12. Kawasaki M., Nishimura N.,  (2006), 1064-nm laser fragmentation of thin Au and Ag flakes in acetone for highly productive pathway to stable metal nanoparticles. Appl. Surf. Sci. 253: 2208-2216.

13. Tarasenko N. V., Butsen A. V., Nevar E. A., Savastenko N. A., (2006), Synthesis of nanosized particles during laser ablation of gold in water. Appl. Surf. Sci. 252: 4439-4444.

14. Amininia A., Pourshamsian K., Sadeghi B., (2019), Introducing an effective nanocatlytic for the one-pot synthesis and investigation of biological properties of pyranopyrimidinone and xanthenes derivatives. J. Chil. Chem. Soc. 64: 4633–4638.

15. Sivachidambaram M., Vijaya J. J., Kaviyarasu K., Kennedy L. J., Al-Lohedan H. A., Ramalingam R. J., (2017), A novel synthesis protocol for Co3O4 nanocatalysts and their catalytic applications. RSC Adv. 7: 38861-38870.

16. Hu L., Peng Q., Li Y. J., (2008), Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion.  Am. Chem. Soc. 130: 16136-16137.

17. Wang Y., Wang W., Song W., (2011),  Binary CuO/Co3O4 nanofibers for ultrafast and amplified electrochemical sensing of fructose.  Electrochim. Acta. 56: 10191-10196.

18. Jana T. K., Pal A., Chatterjee K. J., (2015), Magnetic and photocatalytic study of Co3O4–ZnO nanocomposite. Alloys & Comp. 653: 338-344.

19. Dhas C. R., Venkatesh R., Jothivenkatachalam K., Nithya A., Benjamin B. S., Raj A. M. E., Jeyadheepan K., Sanjeeviraja C., (2015), Visible light driven photocatalytic degradation of Rhodamine B and direct Red using cobalt oxide nanoparticles. Ceram. Int. 41: 9301-9313.

20. Robinson T., McMullan G., Marchant R., Nigam P., (2001),  Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technol. 77: 247-255.

21. David S. A., Vedhi C., (2017), Synthesis of nano Co3O4-MnO2-ZrO2 mixed oxides for visible-light photocatalytic activity. Int. J. Adv. Res. Sci. Eng.  6: 613-623.

22. Upadhyay A., Agrahari P., Singh D. K., (2015), A review on salient pharmacological features of Momordica charantiaInt. J. Pharmacol. 11: 405-413.

23. Grover J. K., Yadav S. P., (2004), Pharmacological actions and potential uses of Momordica charantia: A review. J. Ethnopharmacol. 93: 123-132.

24. Budrat P., Shotipruk A., (2008), Extraction of phenolic compounds from fruits of bitter melon (Momordica charantia) with subcritical water extraction and antioxidant activities of these extracts. Chiang Mai. J. Sci. 35: 123-130.

25. Beloin N., Gbeassor M., Akpagana K., Hudson J., de Soussa K., Koumaglo K., Arnason J. T., (2005), Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity.  J. Ethnopharmacol. 96: 49-55.

26. Sharma J. K., Srivastava P., Singh G., Akhtar M. S., Ameen S. J. M. S., (2015), Green synthesis of Co3O4 nanoparticles and their applications in thermal decomposition of ammonium perchlorate and dye-sensitized solar cells.  Mat. Sci. Eng. B. 193: 181-188.

27. Yedurkar S., Maurya C., Mahanwar P., (2016), Biosynthesis of zinc oxide nanoparticles using Ixora coccinea leaf extract: A green approach. Open J. Syn. Theory and Appl. 5: 1-14.

28. Rasheed T., Nabeel F., Bilal M., Iqbal H. M., (2019), Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. Biocatal. Agricult. Biotechnol. 19: 1-14.

29. Das R. K., Golder A. K., (2017), Co3O4 spinel nanoparticles decorated graphite electrode: Bio-mediated synthesis and electrochemical H2O2 sensing.  Electrochim. Acta. 251: 415-426.

30. Ikhuoria E. U., Omorogbe S. O., Sone B. T., Maaza M., (2018), Bioinspired shape controlled antiferromagnetic Co3O4 with prism like-anchored octahedron morphology: A facile green synthesis using Manihot esculenta Crantz extract. Sci. Technol. Mat. 30: 92-98.

31. Aragaw S. G., Sabir F. K., Andoshe D. M., Zelekew O. A., (2020), Green synthesis of p-Co3O4/n-ZnO composite catalyst with Eichhornia crassipes plant extract mediated for methylene blue degradation under visible light irradiation. Mat. Res. Exp. 7: 095508.

32. Warang T., Patel N., Fernandes R., Bazzanella N., Miotello A., (2013), Co3O4 nanoparticles assembled coatings synthesized by different techniques for photo-degradation of methylene blue dye.  Appl. Catal. B: Environ. 132: 204-211.

33. Saeed M., Akram N., Naqvi S. A. R., Usman M., Abbas M. A., Adeel M., Nisar A., (2019), Green and eco-friendly synthesis of Co3O4 and Ag- Co3O4: Characterization and photo-catalytic activity.  Green Process. Synth. 8: 382-390.

34. Bibi I., Nazar N., Iqbal M., Kamal S., Nawaz H., Nouren S., Safa Y., Jilani K., Sultan M., Ata S., Rehman F., (2017), Green and eco-friendly synthesis of cobalt-oxide nanoparticle: Characterization and photo-catalytic activity. Adv. Powder Technol. 28: 2035-2043.