skip to main content
Menu
Original Article

PCM, ETS-NOCV, and CDA investigations of interactions of a Cycloplatinated Thiosemicarbazone as antiparasitic and antitumor agents with C20 nano-cage

Authors

Abstract

In this work, we reported a computational investigation on the interaction between a cycloplatinated thiosemicarbazone (CT) as antiparasitic and antitumor agents with C20 molecule. The solvent impacts were considered by the SCRF based on PCM. The relationships of solvation energies, interaction energy, dipole moment, and N-H stretching frequencies (n(NH)) values with modified-Buckingham function were illustrated. ETS-NOCV, CDA, and EDA results provided valuable understanding into the interaction between two fragments.

Graphical Abstract

Keywords

References

1 Moreno-Rodríguez A., Salazar-Schettino P. M., Bautista J. L., Hernández-Luis F., Torrens H., Guevara-Gómez Y., Pina-Canseco S., Torres M. B., Cabrera-Bravo M., Martinez C. M., Pérez-Campos E., (2014), In vitro antiparasitic activity of new thiosemicarbazones in strains of Trypanosoma cruzi. Europ. J. Medic. Chem. 87: 23-29.
https://doi.org/10.1016/j.ejmech.2014.09.027
2 Adams M., Kock C. D., Smith P. J., Land K. M., Liu N., Hopper M., Hsiao A., Burgoyne A. R., Stringer T., Meyer M., Wiesner L., Chibalea K., Smith G. S., (2015), Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes. Dalton Trans. 44: 2456-2461.
https://doi.org/10.1039/C4DT03234A
3 Singh N. K., Kumbhar A. A., Pokharel Y. R., Yadav P. N., (2020), Anticancer potency of copper (II) complexes of thiosemicarbazones. J. Inorg. Biochem. 210: 111134.
https://doi.org/10.1016/j.jinorgbio.2020.111134
4 Pósa V., Hajdu B., Tóth G., Dömötör O., Kowol C. R., Keppler B. K., Spengler G., Gyurcsik B., Enyedy É. A., (2022), The coordination modes of (thio)semicarbazone copper(II) complexes strongly modulate the solution chemical properties and mechanism of anticancer activity. J. Inorg. Biochem. 231: 111786.
https://doi.org/10.1016/j.jinorgbio.2022.111786
5 Lobana T. S., Kaushal M., Bala R., Nim L., Paul K., Arora D. S., Bhatia A., Arora S., Jasinski J. P., (2020), Di-2-pyridylketone-N1-substituted thiosemicarbazone derivatives of copper(II): Biosafe antimicrobial potential and high anticancer activity against immortalized L6 rat skeletal muscle cells. J. Inorg. Biochem. 212: 111205.
https://doi.org/10.1016/j.jinorgbio.2020.111205
6 González-Barcia L. M., Fernández-Fariña S., Rodríguez-Silva L., Bermejo M. R., González-Noya A. M., Pedrido R., (2020), Comparative study of the antitumoral activity of phosphine-thiosemicarbazone gold(I) complexes obtained by different methodologies. J. Inorg. Biochem. 203: 110931.
https://doi.org/10.1016/j.jinorgbio.2019.110931
7 Cao W., Qi J., Qian K., Tian L., Cheng Z., Wang Y., (2019), Structure−activity relationships of 2‑quinolinecarboxaldehyde thiosemicarbazone gallium (III) complexes with potent and selective anticancer activity. J. Inorg. Biochem. 191: 174-182.
https://doi.org/10.1016/j.jinorgbio.2018.11.017
8 Bisceglie F., Bacci C., Vismarra A., Barilli E., Pioli M., Orsoni N., Pelosi G., (2020), Antibacterial activity of metal complexes based on cinnamaldehyde thiosemicarbazone analogues. J. Inorg. Biochem. 203: 110888.
https://doi.org/10.1016/j.jinorgbio.2019.110888
9 Eissa S. I., Farrag A. M., Abbas S. Y., El Shehry M. F., Ragab A., Fayed E. A., Ammar Y. A., (2021), Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies. Bioorg. Chem. 110: 104803.
https://doi.org/10.1016/j.bioorg.2021.104803
10 Ghanbari H., Cousins B. G., Seifalian A. M., (2011), A nanocage for nanomedicine: Polyhedral oligomeric silsesquioxane (POSS). Macromol. Rapid Commun. 32: 1032-1046.
https://doi.org/10.1002/marc.201100126
11 Prinzbach H., Weiler A., Landenberger P., Wahl F., Worth J., Scott L. T., Gelmont M. D., Olevano D., Issendorff B. V., (2000), Gas-phase production and photoelectron spectroscopy of the smallest fullerene C20. Nature. 407: 60-63.
https://doi.org/10.1038/35024037
12 Chen Z., Heine T., Jiao H., Hirsch A., Thiel W., Schleyer P. V. R., (2004), Theoretical studies on the smallest fullerene: From monomer to oligomers and solid states. Chem. Eur. J. 10: 963-970.
https://doi.org/10.1002/chem.200305538
13 Luo J., Peng L. M., Xue Z. Q., Wu J. L., (2004), Positive electron affinity of fullerenes: Its effect and origin. J. Chem. Phys. 120: 7998-8001.
https://doi.org/10.1063/1.1691397
14 Shahzad H., Ahmadi R., Adhami F., Najafpour J., (2020), Adsorption of cytarabine on the surface of fullerene C20: A comprehensive DFT study. Euras. Chem. Communic. 2: 162-169.
https://doi.org/10.33945/SAMI/ECC.2020.2.1
15 Ahmadi R., (2018), Investigating the effect of fullerene (C20) substitution on the structural and energetic properties of Tetryl by density functional theory. J. Phys. Theoret. Chem. 15: 15-25.
16 Moghaddam T. S. N., Nikmaram F. R., Ahmadi R., (2017), Density functional theory study of the Behavior of Carbon Nano cone, BP Nano cone and CSi Nano cone as Nano Carriers for 5-fluorouracil anticancer drug in water. Int. J. New Chem. 4: 72-77.
17 Ghiasi R., Fashami M. Z., Hakimioun A. H., (2014), A density functional approach toward structural features and properties of C20⋯N2X2 (X = H, F, Cl, Br, Me) molecules. J. Theoret. Comput. Chem. 13: 1450023.
https://doi.org/10.1142/S0219633614500230
18 Alavi H., Ghiasi R., Ghazanfari D., Akhgar M. R., (2014), Interaction of Fe(CO)4 with C20 cage in gas and solution phases: A theoretical study. Revue Roumaine de Chimie. 59: 883-891.
19 Alavi H., Ghiasi R., (2017), A theoretical study of the solvent effect on the interaction of C20 and N2H2. J. Struc. Chem. 58: 30-37.
https://doi.org/10.1134/S002247661701005X
20 Ghiasi R., Sadeghi N., (2017), Evolution of the interaction between C20 cage and Cr(CO)5: A solvent effect, QTAIM and EDA investigation. J. Theoret. Comput. Chem. 16: 1750007.
https://doi.org/10.1142/S0219633617500079
21 Kazemi Z., Ghiasi R., Jamehbozorgi S., (2019), A theoretical study of the influence of solvent polarity on the structure and spectral properties in the interaction of C20 and Si2H2. J. Nanoanal. 6: 121-128.
22 Ghiasi R., Rahimi M., Ahmadi R., (2021), Quantum-chemical investigation into the complexation of titanocene dichloride with C20 and M+@C20 (M+= Li, Na, K) cages. J. Struct. Chem. 61: 1681-1690.
https://doi.org/10.1134/S0022476620110025
23 Kazemi Z., Ghiasi R., Jamehbozorgi S., (2018), Analysis of the interaction between the C20 cage and cis-PtCl2(NH3)2: A DFT investigation of the solvent effect, structures, properties, and topologies. J. Struct. Chem. 59: 1044-1051.
https://doi.org/10.1134/S0022476618050050
24 Selvarengan P., Kolandaivel P., (2002), Studies of solvent effects on conformers of glycine molecule. J. Mol. Struct: THEOCHEM. 617: 99-106.
https://doi.org/10.1016/S0166-1280(02)00421-9
25 Allin S. B., Leslie T. M., Lumpkin R. S., (1996), Solvent effects in molecular hyperpolarizability calculations. Chem. Mater. 8: 428-432.
https://doi.org/10.1021/cm950362j
26 Aquino A. J. A., Tunega D., Haberhauer G., Gerzabek M. H., Lischka H., (2002), Solvent effects on hydrogen bondsA theoretical study. J. Phys. Chem. A. 106: 1862-1871.
https://doi.org/10.1021/jp013677x
27 Tomasi J., Mennucci B., Cammi R., (2005), Quantum mechanical continuum solvation models. Chem. Rev. 105: 2999-3094.
https://doi.org/10.1021/cr9904009
28 Springborg M., Specialist Periodical Reports: Chemical Modelling, Applications and Theory. Royal Society of Chemistry: Cambridge, UK, 2008; Vol. 5.
29 Li Y.-K., Wu H.-Y., Zhu Q., Fu K.-X., Li X.-Y., (2011), Solvent effect on the UV/Vis absorption spectra in aqueous solution: The nonequilibrium polarization with an explicit representation of the solvent environment. Comput. Theoret. Chem. 971: 65-72.
https://doi.org/10.1016/j.comptc.2011.06.003
30 Ouennoughi Y., Karce H. E., Aggoun D., Lanez T., Morallon E., (2017), A novel ferrocenic copper (II) complex Salen-like, derived from 5-chloromethyl-2-hydroxyacetophenone and N-ferrocenmethylaniline: Design, spectral approach and solvent effect towards electrochemical behavior of Fc+/Fc redox couple. J. Organom. Chem. 848: 344-351.
https://doi.org/10.1016/j.jorganchem.2017.08.016
31 Aydin M., Akins D. L., (2018), DFT studies on solvent dependence of electronic absorption spectra of free-base and protonated porphyrin. Computat. Theoret. Chem. 1132: 12-22.
https://doi.org/10.1016/j.comptc.2018.04.004
32 Wu C.-l., Zhang S.-h., Gou R.-j., Ren F.-d., Zhu S.-f., (2018), Theoretical insight into the effect of solvent polarity on the formation and morphology of 2, 4, 6, 8, 10, 12-hexanitrohexaazaisowurtzitane (CL-20)/2, 4, 6- Trinitro-Toluene (TNT) cocrystal explosive. Computat. Theoret. Chem. 1127: 22-30.
https://doi.org/10.1016/j.comptc.2018.02.007
33 Dos Santos H. F., Chagas M. A., De Souza L. A., Rocha W. R., De Almeida M. V., Anconi C. P. A., De Almeida W. B., (2017), Water solvent effect on theoretical evaluation of 1H-NMR chemical shifts: O-Methyl-Inositol isomer. J. Phys. Chem. A. 121: 2839-2846.
https://doi.org/10.1021/acs.jpca.7b01067
34 Ganesan M., Vedamanickam N., Paranthaman S., (2018), Studies of intramolecular H-bond interactions and solvent effects in the conformers of glycolic acid - A quantum chemical study. J. Theoret. Computat. Chem. 17: 1850009.
https://doi.org/10.1142/S0219633618500098
35 Shen D., Su P., Wu W., (2018), What kind of neutral halogen bonds can be modulated by solvent effects? Phys. Chem. Chem. Phys. 20: 26126-26139.
https://doi.org/10.1039/C8CP05358H
36 Bi T.-J., Xu L.-K., Wang F., Li X.-Y., (2018), Solvent effects for vertical absorption and emission processes in solution using a self-consistent state specific method based on constrained equilibrium thermodynamics. Phys. Chem. Chem. Phys. 20: 13178-13190.
https://doi.org/10.1039/C8CP00930A
37 Milani N. N., Ghiasi R., Forghaniha A., (2020), The impact of solvent polarity on the stability, electronic properties and 1H NMR chemical shift of the conformers of 2-chloro-3-methylcyclohexan-1-one oxime: A conceptual DFT approach. J. Appl. Spectros. 86: 1123-1131.
https://doi.org/10.1007/s10812-020-00949-9
38 Kamrava S., Ghiasi R., Marjani A., (2021), The conductor-like polarizable continuum model (CPCM) study of Indenyl effect on ligand substitution reaction in the (h5-C9H7)Co(CO)2 complex. Int. J. Chem. Kinet. 53: 901-912.
https://doi.org/10.1002/kin.21491
39 Parsa P., Ghiasi R., Marjani A., (2021), Unveiling the influence of solvent polarity on structural, electronic properties, and 31P NMR parameters of rhenabenzyne complex. Inorg. Chem. Communic. 124: 108479.
https://doi.org/10.1016/j.inoche.2021.108497
40 Kamrava S., Ghiasi R., Marjani A., (2021), Structure, electronic properties and slippage of cyclopentadienyl and indenyl ligands in the (h5-C5H5) (h3-C5H5) W(CO)2 and (h5-C9H7) (h3-C9H7)W(CO)2 complexes: A C-PCM investigation. J. Molec. Liq. 329: 115535.
https://doi.org/10.1016/j.molliq.2021.115535
41 Ghiasi R., Emami R., Sofiyani M. V., (2021), Cyclometalation in the (h3-C5H5)Co(h2-C2H2)(PMe3) and (h3-C9H7)Co(h2-C2H2) (PMe3) complexes: A computational investigation. J. Molec. Liq. 325: 115097.
https://doi.org/10.1016/j.molliq.2020.115097
42 Ghiasi R., Milani N. N., (2021), Exploring of the solvent effect on the electronic structure and 14N NMR chemical shift of cyclic-N3S3Cl3: A computational investigation. Russ. J. Phys. Chem. B. 15: S14-S21.
https://doi.org/10.1134/S1990793121090086
43 Chellan P., Land K. M., Shokar A., Au A., An S. H., Clavel C. M., Dyson P. J., Kock C. D., Smith P. J., Chibale K., Smith G. S., (2012), Exploring the versatility of cycloplatinated Thiosemicarbazones as antitumor and antiparasitic agents. Organomet. 31: 5791−5799.
https://doi.org/10.1021/om300334z
44 Ghiasi R., Valizadeh A., (2023), Computational investigation of interaction of a cycloplatinated thiosemicarbazone as antitumor and antiparasitic agents with B12N12 nano-cage. Res. Chem. 5: 100768.
https://doi.org/10.1016/j.rechem.2023.100768
45 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., J. A. Montgomery J., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2013.
46 Hay P. J., (1977), Basis sets for molecular calculations - representation of 3D orbitals in transition-metal atoms. J. Chem. Phys. 66: 4377-4384.
https://doi.org/10.1063/1.433731
47 Krishnan R., Binkley J. S., Seeger R., Pople J. A., (1980), Self consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72: 650-654.
https://doi.org/10.1063/1.438955
48 McLean A. D., Chandler G. S., (1980), Contracted gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18. J. Chem. Phys. 72: 5639-5648.
https://doi.org/10.1063/1.438980
49 Wachters A. J. H., (1970), Gaussian basis set for molecular wavefunctions containing third-row atoms. J. Chem. Phys. 52: 1033-1036.
https://doi.org/10.1063/1.1673095
50 Rappoport D., Furche F., (2010), Property-optimized gaussian basis sets for molecular response calculations. J. Chem. Phys. 133: 134105
https://doi.org/10.1063/1.3484283
51 Andrae D., Haeussermann U., Dolg M., Stoll H., Preuss H., (1990), Energy-adjusted ab initio pseudopotentials for the 2nd and 3rd row transition-elements. Theor. Chim. Acta. 77: 123-141.
https://doi.org/10.1007/BF01114537
52 Vydrov O. A., Scuseria G. E., Perdew J. P., (2007), Tests of functionals for systems with fractional electron number. J. Chem. Phys. 126: 154109.
https://doi.org/10.1063/1.2723119
53 Vydrov O. A., Scuseria G. E., (2006), Assessment of a long range corrected hybrid functional. J. Chem. Phys. 125: 234109.
https://doi.org/10.1063/1.2409292
54 Tawada Y., Tsuneda T., Yanagisawa S., Yanai T., Hirao K., (2004), A long-range-corrected time-dependent density functional theory. J. Chem. Phys. 120: 8425-8431.
https://doi.org/10.1063/1.1688752
55 Vydrov O. A., Heyd J., Krukau A., Scuseria G. E., (2006), Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. J. Chem. Phys. 125: 074106.
https://doi.org/10.1063/1.2244560
56 Tomasi J., Mennucci B., Cammi R., (2005), Quantum mechanical continuum solvation models. Chem. Rev. 105: 2999-3093.
https://doi.org/10.1021/cr9904009
57 Lu T., Chen Q., (2022), Independent gradient model based on Hirshfeld partition: A new ethod for visual study of interactions in chemical systems. J. Comput. Chem. 43: 539-544.
https://doi.org/10.1002/jcc.26812
58 Xiao M., Lu T., (2015), Generalized charge decomposition analysis (GCDA) method. J. Adv. Phys. Chemistry. 4: 111-124.
https://doi.org/10.12677/JAPC.2015.44013
59 Lu T., Chen F., (2012), Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comp. Chem. 33: 580-592.
https://doi.org/10.1002/jcc.22885
60 Humphrey W., Dalke A., Schulten K., (1996), VMD-Visual molecular dynamics. J. Mol. Graphics. 14: 33-38.
https://doi.org/10.1016/0263-7855(96)00018-5
61 Beka'rek V., Mikulecka A., (1978), A note on evaluation of solvent shifts in IR spectroscopy. Collect. Czech. Chem. Commun. 43: 2879-2881.
https://doi.org/10.1135/cccc19782879
62 Mitoraj M. P., Michalak A., Ziegler T., (2009), Combined charge and energy decomposition scheme for bond analysis. Chem. Theory Comput. 5: 962-975.
https://doi.org/10.1021/ct800503d
63 Michalak A., Mitoraj M., Ziegler T., (2008), Bond orbitals from chemical valence theory. J. Phys. Chem. A. 112: 1933-1939.
https://doi.org/10.1021/jp075460u
64 Ziegler T., Rauk A., (1977), On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chim. Acta. 46: 1-10.
https://doi.org/10.1007/BF02401406