skip to main content
Review Article

Nanomaterials: Applications and challenges in the cosmetics sector



As nanomaterials are being continuously used in the health sector, the cosmetic sector is believed to be the most advanced for using nanoparticles in their products. In order to increase the effectiveness of cosmetic goods, the cosmetic industry is profoundly exploring nanomaterials. Liposomes, dendrimers, nano-emulsions, etc. are examples of nanomaterials that are now common constituents in the cosmetic industry. This article highlights the applications and challenges of nanomaterials in the cosmetics sector. Nanoparticle-based cosmetics have expanded the possibilities of nano cosmetics use to treat dispersed hyperpigmentation, dehydrated, and wrinkled skin diseases that are related to aging. It offers excellent opportunities for both business and academic research. On the other side, there are a lot of safety-related issues that are always getting more attention. That’s why it is necessary to discuss both applications as well as the challenges of applying nanotechnology to cosmetics. Based on all the applications as well as the challenges, it can be concluded that nanomaterials used in cosmetics have substantial health advantages and are helpful, however, they must be sensitively described to ensure their safe usage and total removal from the body. As a result, nano cosmetics products must be produced and marketed with the utmost regard for both the environment and consumer health.

Graphical Abstract



[1] Dureja H., Kaushik D., Gupta M., Kumar V., Lather V., (2005), Cosmeceuticals: An emerging concept. Indian J. Pharmacol. 37: 155-159.
 [2] Bangale M. S., Mitkare S. S., Gattani S. G., Sakarkar D. M., (2012), Recent nanotechnological aspects in cosmetics and dermatological preparations. Int. J. Pharm. Pharm. Sci. 4: 88-97.
[3] Vance M. E., Kuiken T., Vejerano E. P., McGinnis S. P., Hochella M. F., Hull D. R., (2015), Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6: 1769-1780.
[4] Wu X., Guy R. H., (2009), Applications of nanoparticles in topical drug delivery and in cosmetics. J. Drug. Deliv. Sci. Technol. 19: 371-384.
[5] Bowman D. M., Van Calster G., Friedrichs S., (2010), Nanomaterials and regulation of cosmetics. Nat. Nanotechnol. 5: 92-96.
[6] Santos A. C., Panchal A., Rahman N., Pereira-Silva M., Pereira I., Veiga F., Lvov Y., (2019), Evolution of hair treatment and care: Prospects of nanotube-based formulations. Nanomaterials. 9: 903-906.
[7] Alfeeli B., Al-Naqi G., Al-Qattan A., (2012), Current status and prospects of nanotechnology in Arab States. Ceram Trans. 238: 79-92.
[8] Pastrana H., Avila A., Tsai C. S. J., (2018), Nanomaterials in cosmetic products: the challenges with regard to current legal frameworks and consumer exposure. Nanoethics. 12: 123-137.
[9] Carrouel F., Viennot S., Ottolenghi L., Gaillard C., Bourgeois D., (2020), Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: A review of the current situation. Nanomaterials. 10: 140-145.
[10] Revia R. A., Wagner B. A., Zhang M., (2019), A portable electrospinner for nanofiber synthesis and its application for cosmetic treatment of alopecia. Nanomaterials. 9: 1317-1321.
[11] Wendel A., Ghyczy M., (1990), Liposomal cosmetics. Soap Cosmet Chem Spectrosc. 6: 33-37.
[12] Grumezescu A. M., (2016), Nanobiomaterials in galenic formulations and cosmetics: Applications of nanobiomaterials. In: Nanobiomaterials galen. Formul. Cosmet. Appl. Nanobiomaterials. 1-433
[13] Miller G., (2006), Nanomaterials, sunscreens and cosmetics: Small Ingredients Big Rsks. Friends of the Earth, 68-70.
[14] Tiwari S., Singh R., Tawaniya J., (2013), Review on nanotechnology with several aspects. Int. J. Res. Comput. Eng. Electron. 2: 1-8.
[15] Nigam P., (2009), Adverse reactions to cosmetics and methods of testing. Indian J. Dermatol Venereol Leprol. 75: 10-19.
[16] Srinivas K., (2016), The current role of nanomaterials in cosmetics. J. Chem. Pharm. Res. 8: 906-914.
[17] Lohani A., Verma A., Joshi H., Yadav N., Karki N., (2014), Nanotechnology-based cosmeceuticals. Int. Sch. Res. Not. 2014: 843687.
[18] Guglielmini G., (2008), Nanostructured novel carrier for topical application. Clin Dermatol. 26: 341-346.
[19] Sonneville-Aubrun O., Simonnet J. T., L'Alloret F., (2004), Nanoemulsions: A new vehicle for skincare products. Adv. Colloid Interf. Sci. 108-109: 145-149.
[20] Meyer R., Wenk, H. H. J.. S., (2008), Combining convenience and sustainability: simple processing of PEG-free nanoemulsions and classical emulsions. SOFW J. 134: 58-60, 62-65. 
[21] Hoeller S., Sperger A., Valenta C., (2009), Lecithin based nanoemulsions: A comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int. J. Pharm. 370: 181-186.
[22] Yilmaz E., Borchert H. H., (2006), Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema-An in vivo study. Int. J. Pharm. 307: 232-238.
[23] Gesztesi J. L., Santos L. M., Hennieis P. D. T., (2015), An oil in water nanoemulsion a cosmetic composition and a cosmetic product comprising it, a process for preparing said nanoemulsion. Application PCT/BR2005/000222 events.
[24] Ribier A., Simonnet J., Legret S., (1998), Transparent nanoemulsion less than 100 NM based on fluid non-ionic amphiphilic lipids and use in cosmetic or in dermopharmaceuticals. Application US08/607,353 events.
[25] Tadros T., Izquierdo P., Esquena J., Solans C., (2004), Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 108-109: 303-318.
[26] Patel R. P., Joshi J. R., (2012), An overview on nanoemulsion: A novel approach. Int. J. Pharm. Sci. Res. 3: 4640-4650.
[27] Jafari S. M., He Y., Bhandari B., (2007), Optimization of nano-emulsions production by microfluidization. Eur. Food Res. Technol. 225: 733-741.
[28] Sonawane S., (2022), Recent advances in ultrasound-assisted synthesis of nano-emulsions and their industrial applications. Curr. Pharm. Biotechnol. 22: 443-443.
[29] Qian C., McClements D. J., (2011), Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocoll. 25: 1000-1008.
[30] Sonneville-Aubrun O., Yukuyama M. N., Pizzino A., (2018), Application of nanoemulsions in cosmetics. In: Nanoemulsions Formul. Appl. Charact. Elsevier, pp 435-475.
[31] Duarah S., Pujari K., Durai R. D., Narayanan V. H. B., (2016), Nanotechnology-based cosmeceuticals: A review. Int. J. Appl. Pharm. 8: 8-12.
[32] Porras M., Solans C., González C., Martínez A., Guinart A., Gutiérrez J. M., (2004), Studies of formation of W/O nano-emulsions. Colloids Surf. A Physicochem Eng. Asp. 249: 115-118.
[33] Saraswat A., Agarwal R., Katare O. P., Kaur I., Kumar B., (2007), A randomized, double-blind, vehicle-controlled study of a novel liposomal dithranol formulation in psoriasis. J. Dermatolog Treat. 18: 40-45.
[34] Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K., (2013), Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 8: 1-9.
[35] Bei D., Meng J., Youan B. B. C., (2010), Engineering nanomedicines for improved melanoma therapy: Progress and promises. Nanomedicine. 5: 1385-1399.
[36] Bangham A. D., (1963), Physical structure and behavior of lipids and lipid enzymes. Adv. Lipid Res. 64: 65-104.
[37] Mezei M., Gulasekharam V., (1982), Liposomes-A selective drug delivery system for the topical route of administration: Gel dosage form. J. Pharm. Pharmacol. 34: 473-474.
[38] Karim K., Mandal A., Biswas N., Guha A., Chatterjee S., Behera M., Kuotsu K., (2010), Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res. 1: 374-380.
[39] Yeo P. L., Lim C. L., Chye S. M., Ling A. P. K., Koh R. Y., (2017), Niosomes: A review of their structure, properties, methods of preparation, and medical applications. Asian Biomed. 11: 301-313.
[40] Biswal S., Murthy P. N., Sahu J., Sahoo P., (2008), Vesicles of non-ionic surfactants (Niosomes) and drug delivery potential. Int. J. Pharm. Sci. Nanotechnol. 1: 1-8.
[41] Seo D., Song H., (2012), Synthesis of gold nanoparticles in liquid phase. Gold Nanopart. Phys. Chem. Biol. 386: 103-138.
[42] Khan R., Irchhaiya R., (2016), Niosomes: A potential tool for novel drug delivery. J. Pharm. Investig. 46: 195-204.
[43] Sankhyan A., Pawar P., (2012), Recent trends in niosome as vesicular drug delivery system. J. Appl. Pharm. Sci. 2: 20-32.
[44] Muzzalupo R., Pérez L., Pinazo A., Tavano L., (2017), Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release. Int. J. Pharm. 529: 245-252.
[45] Starzyk E., Frydrych A., Solyga A., (2008), Nanotechnology: Does it have a future in cosmetics? SÖFW-Journal. 134: 46-56.
[46] Morganti P., Muzzarelli R. A. A., Muzzarelli C., (2006), Multifunctional use of innovative chitin nanofibrils for skin care. J. Appl. Cosmetol. 24: 105-114.
[47] Anisha S., Kumar S. P., Kumar G. V., Garima G., (2010), Approaches used for penetration enhancement in transdermal drug delivery system. Int. J. Pharm. Sci. 2: 708-716.
[48] Kumari A., Yadav S. K., Yadav S. C., (2010), Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B. Biointerf. 75: 1-18.
[49] Chiari-Andréo B. G., De Almeida-Cincotto M. G. J., Oshiro J. A., Taniguchi C. Y. Y., Chiavacci L. A., Isaac V. L. B., (2019), Nanoparticles for cosmetic use and its application. In: Nanopart. Pharmac. Elsevier, pp 113-146.
[50] Chen Y., Liu H., Zhang Z., Wang S., (2007), Preparation of polymeric nanocapsules by radiation induced miniemulsion polymerization. Eur. Polym. J. 43: 2848-2855.
[51] Wang Z. H., Choi C. J., Kim B. K., Kim J. C., Zhang Z. D., (2003), Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor-condensation process. Carbon N Y. 41: 1751-1758.
[52] Kaushik B. K., Majumder M. K., (2015), Carbon nanotube: Properties and applications. In: Carbon Nanotub. based VLSI interconnects. Springer, pp 17-37.
[53] Poletto F. S., Beck R. C. R., Guterres S. S., Pohlmann A. R., (2011), Polymeric nanocapsules: Concepts and applications. Nanocosm. Nanomedic. 49-68.
[54] Hwang S. L., Kim J. C., (2008), In vivo hair growth promotion effects of cosmetic preparations containing hinokitiol-loaded poly(ε-caprolacton) nanocapsules. J. Microencapsul. 25: 351-356.
[55] Nascimento I. V., Souza M. K., Barbosa W. T., Fideles T. B., Marinho T. M. A., Fook M. V. L., (2016), Development and characterization of chitosan membranes as a system for controlled release of piperine. In: Mater. Sci. Forum. pp: 864-868.
[56] Danckwerts M., Fassihi A., (1991), Implantable controlled release drug delivery systems: A review. Drug Del. Ind. Pharm. 17: 1465-1502.
[57] Dash A. K., Cudworth G. C., (1998), Therapeutic applications of implantable drug delivery systems. J. Pharmacol Toxicol Methods. 40: 1-12.
[58] Kimura H., Ogura Y., (2001), Biodegradable polymers for ocular drug delivery. Ophthalmologica. 215: 143-155.
[59] Sakamoto K., Lochhead R. Y., Maibach H. I., Yamashita Y., (2017), Cosmetic science and technology: Theoretical principles and applications. Elsevier, 1-835 p.
[60] Hosseinkhani B., Callewaert C., Vanbeveren N., Boon N., (2015), Novel biocompatible nanocapsules for slow release of fragrances on the human skin. N. Biotechnol. 32: 40-46.
[61] Nohynek G. J., Dufour E. K., (2012), Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Arch Toxicol. 86: 1063-1075.
[62] Maitra P., Carlo S., Ranade R. A., (2014), Nanoparticle compositions providing enhanced color for cosmetic Formulations. Application US11/970,882 events.
[63] Sharma R., (2020), Synthesis and comparative antibacterial activity of fatty acid capped Silver nanoparticles. J. Pure Appl. Microbiol. 1941-1947.
[64] Sharma R., (2022), Nanotechnology: Pros and cons in food quality. Nano Life. 12: 2230001.
[65] Sharma R., (2021), Synthesis of terminalia bellirica fruit extract mediated silver nanoparticles and application in photocatalytic degradation of wastewater from textile industries. Mater Today Proc. 44: 1995-1998.
[66] Sharma R., (2022), Biodegradable polymer nanoparticles: Therapeutic applications and challenges. Orient. J. Chem. 38: 6.
[67] Holladay R. J., Moeller W., Mehta D., Roy R., Julian H. J. Brooks M. G. M., (2011), Silver/Water, silver gels and silver-based compositions and methods for making and using the same. 1: 10-13.
[68] Lem K. W., Choudhury A., Lakhani A. A., Kuyate P., Haw J. R., Lee D. S., Iqbal Z., Brumlik C. J., (2011), Use of nanosilver in consumer products. Recent Pat Nanotechnol. 6: 60-72.
[69] Kokura S., Handa O., Takagi T., Ishikawa T., Naito Y., Yoshikawa T., (2010), Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 6: 570-574.
[70] Bong H. Ch., Yong T. L., Jin K. K., Jin Y. J.., (2009), Cosmetic pigment composition containing gold or silver nano-particles. Us 20090022765a1. 56: 1986-2001.
[71] Gajbhiye S., Sakharwade S., (2016), Silver nanoparticles in cosmetics. J. Cosmet. Dermatological Sci. Appl. 06: 48-53.
[72] Kheybari S., Samadi N., Hosseini S. V., Fazeli A., Fazeli M. R., (2010), Synthesis and antimicrobial effects of silver nanoparticles produced by chemical reduction method. DARU, J. Pharm. Sci. 18: 168-172.
[73] Morones J. R., Elechiguerra J. L., Camacho A., Holt K., Kouri J. B., Ramírez J. T., Yacaman M. J., (2005), The bactericidal effect of silver nanoparticles. Nanotechnol. 16: 2346-2353.
[74] Mukherji S., Ruparelia J., Agnihotri S., (2014), Antimicrobial activity of silver and copper nanoparticles: Variation in sensitivity across various strains of bacteria and fungi. In: Nano-Antimicrobials Prog. Prospect. Springer, pp 225-251.
[75] Robertson T. A., Sanchez W. Y., Roberts M. S., (2010), Are commercially available nanoparticles safe when applied to the skin? J. Biomed. Nanotechnol. 6: 452-468.
[76] Haveli S. D., Walter P., Patriarche G., Ayache J., Castaing J., Van Elslande E., Tsoucaris G., Wang P.-A., Kagan H. B., (2012), Hair fiber as a nanoreactor in controlled synthesis of fluorescent gold nanoparticles. Nano Lett. 12: 6212-6217.
[77] Lin Y., Yan L., (2004), Broad spectrum anti-bactericidal ointment nano. CN Patent. CN 1480045:
[78] Klajnert B., Bryszewska M., (2001), Dendrimers: Properties and applications. Acta Biochim Pol. 48: 199-208.
[79] Abbasi E., Aval S. F., Akbarzadeh A., Milani M., Nasrabadi H. T., Joo S. W., Hanifehpour Y., Nejati-Koshki K., Pashaei-Asl R., (2014), Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 9: 1-10.
[80] Myers V. S., Weir M. G., Carino E. V., Yancey D. F., Pande S., Crooks R. M., (2011), Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications. Chem. Sci. 2: 1632-1646.
[81] Gopidas K. R., Whitesell J. K., Fox M. A., (2003), Nanoparticle-cored dendrimers: Synthesis and characterization. J. Am. Chem. Soc. 125: 6491-6502.
[82] Simon F., Tournihac P., (2001), Cosmetic or dermatological topical compositions comprising dendritic polyesters. Application US09/397,517 events.
[83] Hori S., Iimura T., (2019), Copolymer having carbosiloxane dendrimer structure and composition and cosmetic containing the same. United States Pat. US. 2: 8.
[84] Sung C.-M., (2013), Compositions and methods for providing ultraviolet radiation protection. Application CN99812214A events.
[85] Vetrivel R., Navinselvakumar C., Samuel Ratna Kumar P. S., (2018), Carbon nanotubes and its applications - A review. Int. J. Mech. Prod. Eng. Res. Dev. 8: 288-293.
[86] Huang X., Kobos R. K., Xu G., (2007), Hair coloring and cosmetic compositions comprising carbon nanotubes. United States Pat. 1-29.
[87] Andrews R., Jacques D., Qian D., Rantell T., (2002), Multiwall carbon nanotubes: Synthesis and application. Acc Chem. Res. 35: 1008-1017.
[88] Macák J. M., Tsuchiya H., Schmuki P., (2005), High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chemie - Int. Ed. 44: 2100-2102.
[89] Huang X., Kobos R. K., Xu G., (2008), Peptide-based carbon nanotube hair colorants and their use in hair colorant and cosmetic compositions (2008). Application US11/093,873 events.
[90] Deen I., Zhitomirsky I., (2014), Electrophoretic deposition of composite halloysite nanotube-hydroxyapatite- hyaluronic acid films. J. Alloys Compd. 586: 38-44.
[91] Panchal A., Fakhrullina G., Fakhrullin R., Lvov Y., (2018), Self-assembly of clay nanotubes on hair surface for medical and cosmetic formulations. Nanoscale. 10: 18205-18216.
[92] Sinitsa A. S., Lebedeva I. V., Polynskaya Y. G., Popov A. M., Knizhnik A. A., (2020), Molecular dynamics study of sp-defect migration in odd fullerene: Possible role in synthesis of abundant isomers of fullerenes. J. Phys. Chem. C. 124: 11652-11661.
[93] Hirsch A., (1993), The chemistry of the fullerenes: An overview. Angew Chemie Int. Ed. English. 32: 1138-1141.
[94] Kroto H. W., (1987), J R HEATH, SC O'BRIEN, RF CURL, AND RE SMALLEy. Astrophys J. 314: 352-356.
[95] Cusan C., Da Ros T., Spalluto G., Foley S., Janot J.-M., Seta P., Larroque C., Tomasini M. C., Antonelli T., Ferraro L., (2002), A new multi-charged C60 derivative: Synthesis and biological properties. Europ. J. Org. Chem. 2002: 2928-2934.<2928::AID-EJOC2928>3.0.CO;2-I
[96] Mojica M., Alonso J. A., Méndez F., (2013), Synthesis of fullerenes. J. Phys. Org. Chem. 26: 526-539.
[97] Nimibofa A., Newton E. A., Cyprain A. Y., Donbebe W., (2018), Fullerenes: Synthesis and applications. J. Mater. Sci. 7: 22-33.
[98] Lens M., (2009), Use of fullerenes in cosmetics. Recent Pat. Biotechnol. 3: 118-123.
[99] Yapar E. A., Inal Ö., (2012), Nanomaterials and cosmetics. J. Pharm. Istanbul Univ. 42: 43-70.
[100] Kato S., Taira H., Aoshima H., Saitoh Y., Miwa N., (2010), Clinical evaluation of fullerene-C60 dissolved in squalane for anti-wrinkle cosmetics. J. Nanosci Nanotechnol. 10: 6769-6774.
[101] Kato S., Aoshima H., Saitoh Y., Miwa N., (2014), Fullerene-C60 derivatives prevent UV-irradiation/TiO2-induced cytotoxicity on keratinocytes and 3D-skin tissues through antioxidant actions. J. Nanosci. Nanotechnol. 14: 3285-3291.
[102] Inui S., Aoshima H., Nishiyama A., Itami S., (2011), Improvement of acne vulgaris by topical fullerene application: Unique impact on skin care. Nanomedic. Nanotechnol. Biol. Med. 7: 238-241.
[103] Wissing S. A., Müller R. H., (2002), Solid lipid nanoparticles as carrier for sunscreens: In vitro release and in vivo skin penetration. J. Control Release. 81: 225-233.
[104] Anis M., Al Taher G., Sarhan W., Elsemary M., (2017), Environment and remediation applications. Nanovate. Springer. 87-112.
[105] Wissing S. A., Müller R. H., (2003), Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 254: 65-68.
[106] Jaiswal P., Gidwani B., Vyas A., (2016), Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells, Nanomedic. Biotechnol. 44: 27-40.
[107] Salvi V. R., Pawar P., (2019), Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol. 51: 255-267.
[108] Gordillo-Galeano A., Mora-Huertas C. E., (2018), Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 133: 285-308.
[109] Pardeike J., Hommoss A., Müller R. H., (2009), Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 366: 170-184.
[110] Müller R. H., Radtke M., Wissing S. A., (2002), Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 54: S131--S155.
[111] Perrie Y., (2013), Pharmaceutical nanotechnology and nanomedicines. Aulton's Pharm. Des. Manuf. Med. 53: 777-795.
[112] Joseph S., Bunjes H., (2013), Solid lipid nanoparticles for drug delivery. Drug Deliv. Strateg. Poorly Water-Soluble Drugs. 56: 103-149.
[113] Song C., Liu S., (2005), A new healthy sunscreen system for human: Solid lipid nannoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding Vitamin E. Int. J. Biol. Macromol. 36: 116-119.
[114] Müller R. H., Petersen R. D., Hommoss A., Pardeike J., (2007), Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev. 59: 522-530.
[115] Mei Z., Wu Q., Hu S., Li X., Yang X., (2005), Triptolide loaded solid lipid nanoparticle hydrogel for topical application. Drug Dev. Ind. Pharm. 31: 161-168.
[116] Watson R. E. B., Long S. P., Bowden J. J., Bastrilles J. Y., Barton S. P., Griffiths C. E. M., (2008), Repair of photoaged dermal matrix by topical application of a cosmetic "antiageing" product. Br. J. Dermatol. 158: 472-477.
[117] Morganti P., Yuanhong L., Morganti G., (2007), Nano-structured products: technology and future. J. Appl. Cosmetol. 25: 161-165.
[118] Iwai H., Fukasawa J., Suzuki T., (1998), A liquid crystal application in skin care cosmetics. Int. J. Cosmet. Sci. 20: 87-102.
[119] Guterres S. S., Alves M. P., Pohlmann A. R., (2007), Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug. Target. Insights. 2: 117739280700200.
[120] Sonavane G., Tomoda K., Sano A., Ohshima H., Terada H., Makino K., (2008), In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size. Colloids Surf. B. Biointerf. 65: 1-10.
[121] Menon G. K., Brandsma J. L., Schwartz P. M., (2007), Particle-mediated gene delivery and human skin: Ultrastructural observations on stratum corneum barrier structures. Skin Pharmacol. Physiol. 20: 141-147.
[122] Mulholland W. J., Arbuthnott E. A. H., Bellhouse B. J., Cornhill J. F., Austyn J. M., Kendall M. A. F., Cui Z., Tirlapur U. K., (2006), Multiphoton high-resolution 3D imaging of Langerhans cells and keratinocytes in the mouse skin model adopted for epidermal powdered immunization. J. Invest. Dermatol. 126: 1541-1548.
[123] Senthil B., Devasena T., Prakash B., Rajasekar A., (2017), Non-cytotoxic effect of green synthesized silver nanoparticles and its antibacterial activity. J. Photochem. Photobiol. B. Biol. 177: 1-7.
[124] Gharpure S., Kirtiwar S., Palwe S., Akash A., Ankamwar B., (2019), Non-antibacterial as well as non-anticancer activity of flower extract and its biogenous silver nanoparticles. Nanotechnology. 30: 195701.
[125] Ankamwar B., Lai T. C., Huang J. H., Liu R. S., Hsiao M., Chen C. H., Hwu Y. K., (2010), Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology. 21: 75102-75105.
[126] Saroha K., Nanda S., Yadav N., (2010), Proniosome gel: Potential carrier system in topical/transdermal delivery for drugs and cosmetics/cosmeceuticals. Pharm Rev. 8: 35-39.
[127] Ajazzuddin M., Jeswani G., Kumar Jha A., (2015), Nanocosmetics: Past, present and future trends. Recent Patents Nanomed. 5: 3-11.
[128] Cohen D., Soroka Y., Ma'or Z., Oron M., Portugal-Cohen M., Brégégère F. M., Berhanu D., Valsami-Jones E., Hai N., Milner Y., (2013), Evaluation of topically applied copper (II) oxide nanoparticle cytotoxicity in human skin organ culture. Toxicol Vitr. 27: 292-298.
[129] Landsiedel R., Ma-Hock L., Van Ravenzwaay B., Schulz M., Wiench K., Champ S., Schulte S., Wohlleben W., Oesch F., (2010), Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology. 4: 364-381.
[130] Usenko C. Y., Harper S. L., Tanguay R. L., (2007), In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon N. Y. 45: 1891-1898.
[131] Oberdörster G., Oberdörster E., Oberdörster J., (2005), Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113: 823-839.
[132] Dhawan A., Taurozzi J. S., Pandey A. K., Shan W., Miller S. M., Hashsham S. A., Tarabara V. V, (2006), Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci & Technol. 40: 7394-7401.
[133] Yamawaki H., Iwai N., (2006), Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am. J. Physiol. Physiol. 290: C1495-C1502.