References

[1] Laha D., Pramanik A., Laskar A., Jana M., Pramanik P., Karmakar P., (2014), Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage. Mater. Res. Bullet. 59: 185-191. Elsevier BV. https://doi.org/10.1016/j.materresbull.2014.06.024

[2] Maruthapandi M., Saravanan A., Luong J. H. T., Gedanken A., (2020), Antimicrobial properties of polyaniline and polypyrrole decorated with Zinc-doped Copper Oxide microparticles. Polymers. 12: 1286-1291. https://doi.org/10.3390/polym12061286

[3] Bhavyasree P. G., Xavier T. S., (2022), Green synthesized copper and copper oxide based nanomaterials using plant extracts and their application in antimicrobial activity: Review. Current Res. Green and Sustain. Chem. 5: 100249-100253.
https://doi.org/10.1016/j.crgsc.2021.100249

[4] Manimaran K., Yanto D. H. Y., Kamaraj C., Selvaraj K., Pandiaraj S., M., Elgorban A., Vignesh S., Kim H., (2023), Eco-friendly approaches of mycosynthesized copper oxide nanoparticles (CuONPs) using Pleurotus citrinopileatus mushroom extracts and their biological applications. Environm. Res. 232: 116319-116323. https://doi.org/10.1016/j.envres.2023.116319

[5] Singh J., Kaur G., Rawat M., (2016), A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. J. Bioelect. Nanotechnol. 1: 9-16. https://doi.org/10.13188/2475-224X.1000003

[6] Khan A., Tariq Z., Malik M. H., (2022), Synthesis, characterization, and photocatalytic applications of novel sword-like copper oxide microparticles. Mate. Lett. 324: 132625-132630. https://doi.org/10.1016/j.matlet.2022.132625

[7] Anandan S., Lee G.-J., Wu J. J., (2012), Sonochemical synthesis of CuO nanostructures with different morphology. Ultrasonics Sonochem. 19: 682-686. https://doi.org/10.1016/j.ultsonch.2011.08.009

[8] Borgohain K., Singh J. B., Rama Rao M. V., Shripathi T., Mahamuni S., (2000), Quantum size effects in CuO nanoparticles. Phys. Rev. B. 61: 11093-11096. https://doi.org/10.1103/PhysRevB.61.11093

[9] Zhu Y.-J., Chen F., (2014), Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 114: 6462-6555.
https://doi.org/10.1021/cr400366s

[10] Waris A., Din M., Ali A., Ali M., Afridi S., Baset A., Ullah Khan A., (2021), A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg. Chem. Communic. 123: 108369-108373.
https://doi.org/10.1016/j.inoche.2020.108369

[11] Zhang Y., Xue C., Xue Y., Gao R., Zhang X., (2005), Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohyd. Res. 340: 1914-1917. https://doi.org/10.1016/j.carres.2005.05.005

[12] Bekru A. G., Zelekew O. A., Andoshe D. M., Sabir F. K., Eswaramoorthy R., (2021), Microwave-assisted synthesis of CuO nanoparticles using cordia africana lam. Leaf extract for 4-Nitrophenol reduction. J. Nanotech. 2021: 1-12. https://doi.org/10.1155/2021/5581621

[13] Scherrer P., (1912), Bestimmung der inneren struktur und der größe von kolloidteilchen mittels röntgenstrahlen. Kolloidchemie Ein Lehrbuch. 387-409. https://doi.org/10.1007/978-3-662-33915-2_7

[14] Berthomieu C., Hienerwadel R., (2009), Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res. 101: 157-170.
https://doi.org/10.1007/s11120-009-9439-x

[15] Jagminas A., Kuzmarskyt J., Niaura G., (2002), Electrochemical formation and characterization of copper oxygenous compounds in alumina template from ethanolamine solutions. Appl. Surf. Sci. 201: 129-137. https://doi.org/10.1016/S0169-4332(02)00649-9

[16] Xia J., Li H., Luo Z., Shi H., Wang K., Shu H., Yan Y., (2009), Microwave-assisted synthesis of flower-like and leaf-like CuO nanostructures via room-temperature ionic liquids. J. Phys. Chem. Solids. 70: 1461-1464. https://doi.org/10.1016/j.jpcs.2009.08.006

[17] Saravanan P., SenthilKannan K., Divya R., Vimalan M., Tamilselvan S., Sankar D., (2020), A perspective approach towards appreciable size and cost-effective solar cell fabrication by synthesizing ZnO nanoparticles from Azadirachta indica leaves extract using domestic microwave oven. J. Mater. Sci: Mater. Electron. 31: 4301-4309. https://doi.org/10.1007/s10854-020-02985-9

[18] Chand P., Gaur A., Kumar A., (2013), Structural, optical and ferroelectric behavior of hydrothermally grown ZnO nanostructures. Superlatt. Microstruc. 64: 331-342. https://doi.org/10.1016/j.spmi.2013.09.038

[19] Wang W.-N., Widiyastuti W., Ogi T., Lenggoro I. W., Okuyama K., (2007), Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors. Chem. Mater. 19: 1723-1730. https://doi.org/10.1021/cm062887p

[20] Khodadad H., Hatamjafari F., Pourshamsian Kh., Sadeghi B., (2021), Microwave-assisted synthesis of novel Pyrazole derivatives and their biological evaluation as anti-bacterial agents. Comb. Chem. High Throughput Screen. 24: 695-700.
https://doi.org/10.2174/1386207323666201019152206