skip to main content
Menu
Original Article

Microwave assisted synthesis of rod-shaped Copper Oxide microparticles and study of their bactericidal effects on Bacillus subtilis

Authors

Abstract

Bactericidal effect of copper oxide is still a growing area of research even though a lot of experiments have been carried out by the researchers. The present work was designed to explore structural and optical properties of micro-size copper oxide particles (µCuO) synthesized using microwave irradiation. Synthesized samples were characterized with ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, x-ray diffraction and scanning electron microscopy. Scanning electron micrographs revealed the formation of rod-shaped copper oxide in micron size. X-ray diffraction pattern showed the synthesized microparticles are in monoclinic phase. Solutions of µCuO with various concentrations from 1% to 15% were prepared using dimethyl sulfoxide for the antibacterial study. Starting from 2% concentration, µCuO started to produce a good inhibition zone around the Bacillus subtilis bacteria. The prepared µCuO displayed splendid results in bactericidal activity against Bacillus subtilis bacteria. Higher concentrations of the µCuO showed strong action against bacterial growth. Micro-size copper oxide can also be used as an antibacterial agent like nano-size copper oxide.

Graphical Abstract

Read the full text of the article

Keywords

References

[1] Laha D., Pramanik A., Laskar A., Jana M., Pramanik P., Karmakar P., (2014), Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage. Mater. Res. Bullet. 59: 185-191. Elsevier BV. https://doi.org/10.1016/j.materresbull.2014.06.024

[2] Maruthapandi M., Saravanan A., Luong J. H. T., Gedanken A., (2020), Antimicrobial properties of polyaniline and polypyrrole decorated with Zinc-doped Copper Oxide microparticles. Polymers. 12: 1286-1291. https://doi.org/10.3390/polym12061286

[3] Bhavyasree P. G., Xavier T. S., (2022), Green synthesized copper and copper oxide based nanomaterials using plant extracts and their application in antimicrobial activity: Review. Current Res. Green and Sustain. Chem. 5: 100249-100253.
https://doi.org/10.1016/j.crgsc.2021.100249

[4] Manimaran K., Yanto D. H. Y., Kamaraj C., Selvaraj K., Pandiaraj S., M., Elgorban A., Vignesh S., Kim H., (2023), Eco-friendly approaches of mycosynthesized copper oxide nanoparticles (CuONPs) using Pleurotus citrinopileatus mushroom extracts and their biological applications. Environm. Res. 232: 116319-116323. https://doi.org/10.1016/j.envres.2023.116319

[5] Singh J., Kaur G., Rawat M., (2016), A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. J. Bioelect. Nanotechnol. 1: 9-16. https://doi.org/10.13188/2475-224X.1000003

[6] Khan A., Tariq Z., Malik M. H., (2022), Synthesis, characterization, and photocatalytic applications of novel sword-like copper oxide microparticles. Mate. Lett. 324: 132625-132630. https://doi.org/10.1016/j.matlet.2022.132625

[7] Anandan S., Lee G.-J., Wu J. J., (2012), Sonochemical synthesis of CuO nanostructures with different morphology. Ultrasonics Sonochem. 19: 682-686. https://doi.org/10.1016/j.ultsonch.2011.08.009

[8] Borgohain K., Singh J. B., Rama Rao M. V., Shripathi T., Mahamuni S., (2000), Quantum size effects in CuO nanoparticles. Phys. Rev. B. 61: 11093-11096. https://doi.org/10.1103/PhysRevB.61.11093

[9] Zhu Y.-J., Chen F., (2014), Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 114: 6462-6555.
https://doi.org/10.1021/cr400366s

[10] Waris A., Din M., Ali A., Ali M., Afridi S., Baset A., Ullah Khan A., (2021), A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg. Chem. Communic. 123: 108369-108373.
https://doi.org/10.1016/j.inoche.2020.108369

[11] Zhang Y., Xue C., Xue Y., Gao R., Zhang X., (2005), Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohyd. Res. 340: 1914-1917. https://doi.org/10.1016/j.carres.2005.05.005

[12] Bekru A. G., Zelekew O. A., Andoshe D. M., Sabir F. K., Eswaramoorthy R., (2021), Microwave-assisted synthesis of CuO nanoparticles using cordia africana lam. Leaf extract for 4-Nitrophenol reduction. J. Nanotech. 2021: 1-12. https://doi.org/10.1155/2021/5581621

[13] Scherrer P., (1912), Bestimmung der inneren struktur und der größe von kolloidteilchen mittels röntgenstrahlen. Kolloidchemie Ein Lehrbuch. 387-409. https://doi.org/10.1007/978-3-662-33915-2_7

[14] Berthomieu C., Hienerwadel R., (2009), Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res. 101: 157-170.
https://doi.org/10.1007/s11120-009-9439-x

[15] Jagminas A., Kuzmarskyt J., Niaura G., (2002), Electrochemical formation and characterization of copper oxygenous compounds in alumina template from ethanolamine solutions. Appl. Surf. Sci. 201: 129-137. https://doi.org/10.1016/S0169-4332(02)00649-9

[16] Xia J., Li H., Luo Z., Shi H., Wang K., Shu H., Yan Y., (2009), Microwave-assisted synthesis of flower-like and leaf-like CuO nanostructures via room-temperature ionic liquids. J. Phys. Chem. Solids. 70: 1461-1464. https://doi.org/10.1016/j.jpcs.2009.08.006

[17] Saravanan P., SenthilKannan K., Divya R., Vimalan M., Tamilselvan S., Sankar D., (2020), A perspective approach towards appreciable size and cost-effective solar cell fabrication by synthesizing ZnO nanoparticles from Azadirachta indica leaves extract using domestic microwave oven. J. Mater. Sci: Mater. Electron. 31: 4301-4309. https://doi.org/10.1007/s10854-020-02985-9

[18] Chand P., Gaur A., Kumar A., (2013), Structural, optical and ferroelectric behavior of hydrothermally grown ZnO nanostructures. Superlatt. Microstruc. 64: 331-342. https://doi.org/10.1016/j.spmi.2013.09.038

[19] Wang W.-N., Widiyastuti W., Ogi T., Lenggoro I. W., Okuyama K., (2007), Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors. Chem. Mater. 19: 1723-1730. https://doi.org/10.1021/cm062887p

[20] Khodadad H., Hatamjafari F., Pourshamsian Kh., Sadeghi B., (2021), Microwave-assisted synthesis of novel Pyrazole derivatives and their biological evaluation as anti-bacterial agents. Comb. Chem. High Throughput Screen. 24: 695-700.
https://doi.org/10.2174/1386207323666201019152206