skip to main content
Menu
Original Article

Highly flexible, thermally stable, and dust-free fiber-embedded nanoporous Silica aerogel blanket for spacecraft applications

Authors

Abstract

The highly lightweight and thermal insulator polyvinyl alcohol (PVA) doped fiber-embedded silica aerogel blankets was prepared with different types of fibers. The performances of PVA-doped silica aerogel blankets were compared. The silica aerogel blankets were prepared by integrating different fibers with encapsulated the PVA during the aging process. The synergic effect of PVA doping-derived silica aerogel blankets on the thermal conductivity, surface physical characteristics and young modulus were investigated. Consequences revealed that PVA-encapsulated blankets could diminish the thermal conductivity, porosity, and density of the aerogel blanket. The prepared blankets have shown further properties intensely without significant reduction. Experimental outcomes exhibited the properties of improvement in thermal conductivity (in the range of 0.023-0.035 W/m.K), density (in the range of 0.051 – 0.118 g/cm3), and Young Modulus regarding the pure silica aerogel. The prepared PVA-based aerogel blanket has prospective in various sectors such as the production of spacecraft apparel, military jackets, clothes for fire-fighting and hilly areas people from low-temperature protection.

Graphical Abstract

Keywords

References

  1. He S., Yang H., Chen X., (2017), Facile synthesis of highly porous silica aerogel granules and its burning behavior under radiation. J. Sol-Gel Sci. Technol. 82: 407-416.https://doi.org/10.1007/s10971-017-4304-4
  2. He S., Huang Y., Chen G., Feng M., Dai H., Yuan B., Chen X., (2019), Effect of heat treatment on hydrophobic silica aerogel. J. Hazard. Mater. 362: 294-302.https://doi.org/10.1016/j.jhazmat.2018.08.087
  3. Su L. J., Guo H., Song H., Wang R. J., Li W. J., (2020), Research and application for In situ blend of infrared opacifiers titanium oxide in silica aerogel. Key Eng. Mater. 845: 33-38.https://doi.org/10.4028/www.scientific.net/KEM.845.33
  4. Mei H., Li H., Jin Z., Li L., Yang D., Liang C., Zhang L., (2023), 3D-printed SiC lattices integrated with lightweight quartz fiber/silica aerogel sandwich structure for a thermal protection system. Chem. Eng. J. 454: 140408. https://doi.org/10.1016/j.cej.2022.140408
  5. Shafi S., Navik R., Ding X., Zhao Y., (2019), Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel. J. Non-Cryst. Solids. 503: 78-83. https://doi.org/10.1016/j.jnoncrysol.2018.09.029
  6. Meti P., Mahadik D. B., Lee K. Y., Wang Q., Kanamori K., Gong Y. D., Park H. H., (2022), Overview of organic-inorganic hybrid silica aerogels: Progress and perspectives. Mater. Design. 222: 111091. https://doi.org/10.1016/j.matdes.2022.111091
  7. Nguyen T. H., Mai N. T., Reddy V. R. M., Jung J. H., Truong N. T. N., (2020), Synthesis of silica aerogel particles and its application to thermal insulation paint. Korean J. Chem. Eng. 37: 1803-1809. https://doi.org/10.1007/s11814-020-0574-6
  8. Nah H. Y., Kim Y., Kim T., Lee K. Y., Parale V. G., Lim C. H., Park H. H., (2020), Comparisonal studies of surface modification reaction using various silylating agents for silica aerogel. J. Sol-Gel Sci. Tech. 96: 346-359. https://doi.org/10.1007/s10971-020-05399-5
  9. Rezaei S., Zolali A. M., Jalali A., Park C. B., (2020), Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor. J. Colloid Interf. Sci. 561: 890-901. https://doi.org/10.1016/j.jcis.2019.11.072
  10. 10.  Wang F., Sun X., Tao Z., Pan Z., (2022), Effect of silica fume on compressive strength of ultra-high-          performance concrete made of calcium aluminate cement/fly ash based geopolymer. J. Build. Eng. 62: 105398. https://doi.org/10.1016/j.jobe.2022.105398
  11. Wang F., Dou L., Dai J., Li Y., Huang L., Si Y., Ding B., (2020), In situ synthesis of biomimetic silica nanofibrous aerogels with temperature invariant superelasticity over one million compressions. Angewandte Chem. 132: 8362-8369. https://doi.org/10.1002/ange.202001679
  12. Kim J. H., Kim M. J., Lee B., Chun J. M., Patil V., Kim Y. S., (2020), Durable ice-lubricating surfaces based on polydimethylsiloxane embedded silicone oil infused silica aerogel. Appl. Surf. Sci. 512: 145728. https://doi.org/10.1016/j.apsusc.2020.145728
  13. Karamikamkar S., Naguib H. E., Park C. B., (2020), Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Adv. Colloid Interf. Sci. 276: 102101. https://doi.org/10.1016/j.cis.2020.102101
  14. Wang P., Wu H. L., Li W. W., Leung C. K., (2023), Mechanical properties and microstructure of glass fiber reinforced polymer (GFRP) rebars embedded in carbonated reactive MgO-based concrete (RMC). Cement and Concrete Compos. 142: 105207. https://doi.org/10.1016/j.cemconcomp.2023.105207
  15. Hongisto M., Ghanavati S., Lemiere A., Hauss G., Boraiah S., Cornet L., Danto S., (2023), Characterization of biodegradable core clad borosilicate glass fibers with round and rectangular cross section. J. Am. Ceram. Society. 106: 6527-6540. https://doi.org/10.1111/jace.19304
  16. Zhang X., Zhang T., Yi Z., Yan L., Liu S., Yao X., Hou F., (2020), Multiscale mullite fiber/whisker reinforced silica aerogel nanocomposites with enhanced compressive strength and thermal insulation performance. Ceram. Int. 46: 28561-28568. https://doi.org/10.1016/j.ceramint.2020.08.013
  17. Almeida C. M., Ghica M. E., Ramalho A. L., Durães L., (2021), Silica-based aerogel composites reinforced with different aramid fibres for thermal insulation in space environments. J. Mater. Sci. 56: 13604-13619. https://doi.org/10.1007/s10853-021-06142-3
  18. R Yadav M., Garg S., Chandra A., Hernadi K., (2019), Immobilization of green BiOX (X= Cl, Br and I) photocatalysts on ceramic fibers for enhanced photocatalytic degradation of recalcitrant organic pollutants and efficient regeneration process. Ceram. Int. 45: 17715-17722. https://doi.org/10.1016/j.ceramint.2019.05.340
  19. Rocha H., Lafont U., Semprimoschnig C., (2019), Environmental testing and characterization of fibre reinforced silica aerogel materials for Mars exploration. Acta Astronautica. 165: 9-16. https://doi.org/10.1016/j.actaastro.2019.07.030
  20. Liu Q., Yan K., Chen J., Xia M., Li M., Liu K., Xie Y., (2021), Recent advances in novel aerogels through the hybrid aggregation of inorganic nanomaterials and polymeric fibers for thermal insulation. Aggregate. 2: e30. https://doi.org/10.1002/agt2.30
  21. Bhuiyan M. R., Wang L., Shaid A., Shanks R. A., Ding J., (2019), Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection. Progress in Org. Coat. 131: 100-110. https://doi.org/10.1016/j.porgcoat.2019.01.041
  22. Bhuiyan M. R., Wang L., Shaid A., Jahan I., Shanks R. A., (2020), Silica aerogel-integrated nonwoven protective fabrics for chemical and thermal protection and thermophysiological wear comfort. J. Mater. Sci. 55: 2405-2418. https://doi.org/10.1007/s10853-019-04203-2
  23. Hu J., Qian Y., Liu T., Wu T., Zhang G., Zhang W., (2023), Preparation of needled nonwoven enhanced silica aerogel for thermal insulation. Case Studies in Thermal Eng. 45: 103025. https://doi.org/10.1016/j.csite.2023.103025
  24. Regina S., Poerio T., Mazzei R., Sabia C., Iseppi R., Giorno L., (2022), Pectin as a non-toxic crosslinker for durable and water-resistant biopolymer-based membranes with improved mechanical and functional properties. Europ. Polym. J. 172: 111193. https://doi.org/10.1016/j.eurpolymj.2022.111193
  25. Zhang Z., Liu Y., Du W., Liang Z., Li F., Yong Y., Li Z., (2023), Construction of layered double hydroxide-modified silica integrated multilayer shell phase change capsule with flame retardancy and highly efficient thermoregulation performance. J. Colloid and Interf. Sci. 632: 311-325. https://doi.org/10.1016/j.jcis.2022.11.075
  26. Shen J., Zhang P., Song L., Li J., Ji B., Li J., Chen L., (2019), Polyethylene glycol supported by phosphorylated polyvinyl alcohol/graphene aerogel as a high thermal stability phase change material. Compos. Part B: Eng. 179: 107545. https://doi.org/10.1016/j.compositesb.2019.107545
  27. Wang R., Li G., Liu S., (2021), Experimental investigation of the matrix pore size distribution and inner surface fractal dimension of different-structure high rank coals. J. Nanosci. Nanotech. 21: 529-537. https://doi.org/10.1166/jnn.2021.18516
  28. Wang Z., Jiang X., Pan M., Shi Y., (2020), Nano-scale pore structure and its multi-fractal characteristics of tight sandstone by n2 adsorption/desorption analyses: A case study of shihezi formation from the sulige gas filed, ordos basin, china. Minerals. 10: 377-380. https://doi.org/10.3390/min10040377
  29. Wu S., Song Y., Lu C., Yang T., Yuan S., Tian X., Liu Z., (2023), High-rate soft carbon anode in potassium ion batteries: The role of chemical structures of pitches. Carbon. 203: 211-220. https://doi.org/10.1016/j.carbon.2022.11.058
  30. Jadhav S. B., Makki A., Hajjar D., Sarawade P. B., (2022), Synthesis of light weight recron fiber-reinforced sodium silicate based silica aerogel blankets at an ambient pressure for thermal protection. J. Porous Mater. 29: 957-969. https://doi.org/10.1007/s10934-022-01231-3
  31. Xie D., Jiang Y., Xu R., Zhang Z., Chen G., (2023), Preparation of ethanol-gels as hand sanitizers formed from chitosan and silica nanoparticles. J. Molec. Liq. 384: 122276. https://doi.org/10.1016/j.molliq.2023.122276
  32. Yao G., Huang Q., (2022), Theoretical and experimental study of the infrared and Raman spectra of L-lysine acetylation. Spectrochim. Acta Part A: Molec. Biomolec. Spectros. 278: 121371. https://doi.org/10.1016/j.saa.2022.121371
  33. Rajhard S., Hladnik L., Vicente F. A., Srčič S., Grilc M., Likozar B., (2021), Solubility of luteolin and other polyphenolic compounds in water, nonpolar, polar aprotic and protic solvents by applying ftir/hplc. Processes. 9: 1952-1955. https://doi.org/10.3390/pr9111952
  34. Kan J., Liu J., Yong H., Liu J., (2023), Development of shrimp freshness-monitoring labels by immobilizing black eggplant and black goji berry anthocyanins in different polysaccharide/PVA matrices. J. Food Meas. Charact. 17: 447-459. https://doi.org/10.1007/s11694-022-01641-6
  35. Tak U. N., Rashid S., Ahangar F. A., Kour P., Shaheen A., Sidiq S., Dar A. A., (2023), A composite polyvinyl alcohol-medicinal plant extract crosslinked hydrogel: a novel soft system with excellent rhodamine B adsorption and significant antifungal activity. New J. Chem. 47: 13422-13435. https://doi.org/10.1039/D3NJ02229C
  36. Renjith P. K., Sarathchandran C., Sekkar V., Chandramohanakumar N., (2023), Silica aerogel composite with inherent superparamagnetic property: a pragmatic and ecofriendly approach for oil spill clean-up under harsh conditions. Mater. Today Sustain. 24: 100498. https://doi.org/10.1016/j.mtsust.2023.100498
  37. Fiorini C. V., Merli F., Belloni E., Anderson A. M., Carroll M. K., Buratti C., (2023), Optical and color rendering long-term performance of monolithic aerogel after laboratory accelerated aging: Development of a method and preliminary experimental results. Solar Energy. 253: 515-526. https://doi.org/10.1016/j.solener.2023.01.030
  38. Liu B., Zhang J., Guo H., (2022), Research progress of polyvinyl alcohol water-resistant film materials. Membranes. 12: 347-349. https://doi.org/10.3390/membranes12030347
  39. Lamy-Mendes A., Pontinha A. D. R., Santos P., Durães L., (2022), Aerogel composites produced from silica and recycled rubber sols for thermal insulation. Materials. 15: 7897-7880. https://doi.org/10.3390/ma15227897
  40. Rocha H., Lafont U., Semprimoschnig C., (2019), Environmental testing and characterization of fibre reinforced silica aerogel materials for mars exploration. Acta Astronautica. 165: 9-16. https://doi.org/10.1016/j.actaastro.2019.07.030